摘要
充分利用在线学习空间数据构建学生评价指标体系对直接、有效评价学生,提升学习成效具有重要意义。本研究基于表征学生在线学习过程、学习结果、学习增值的理念,结合半结构访谈和问卷调查构建学生评价指标逻辑框架,包括交互度、投入度、完成度、有效度、增值度等5项指标因子和20项数据指标,采用层次分析法完成指标因子和数据指标的权重分配,进而“提出完善指标,推动评价科学化”“收集数据,获得全程多维证据”“推广应用,提升教育教学质量”等有针对性的建议。
Making full use of online learning space data to construct a student evaluation index system is of great significance for directly and effectively evaluating students and improving learning effectiveness.Based on the concept of representing students'online learning process,learning results,and learning value-added,this paper combines semi structured interviews and questionnaires to construct a logical framework for student evaluation indicators,including five dimensions of interaction,engagement,completion,effectiveness,and value-added,as well as 20 data factors.Analytic Hierarchy Process(AHP)is used to complete the weight distribution of indicator factors and data indicators.Then the paper advances some suggestions like proposing and improving indicators,and promoting scientific evaluation,collecting data,obtaining multi-dimensional evidence throughout the process,promoting application,and upgrading the quality of education and teaching and so on.
作者
缪玲
张尚先
燕紫君
MIAO Ling;ZHANG Shang-xian;YAN Zi-jun(Guangdong Open University,Guangzhou,Guangdong,510091;Jiangmen Open University,Jiangmen,Guangdong,529000)
出处
《广州广播电视大学学报》
2023年第2期21-28,107,108,共10页
Journal of Guangzhou Open University
基金
广东省2021年普通高校青年创新人才类项目“基于网络学习空间教与学数据的教师和学生评价模型建构研究”(项目编号:2021WQNCX306)。
关键词
在线学习
学生评价
评价指标
数据评价
online learning
student evaluation
evaluation indicators
data-driven evaluation