期刊文献+

闭合回路电子流强化硝酸盐异化还原为铵性能及功能菌群分析 被引量:1

Performance and functional bacterial community analysis for highly efficient nitrate dissimilatory reduction to ammonium induced by electron flow with closed circuit
原文传递
导出
摘要 硝酸盐异化还原为铵(DNRA)是氮循环中的一个重要过程,DNRA能够将硝酸盐还原为铵,是将活性氮保留在自然生态系统中的重要路径.然而,DNRA的效率仍然较低,其内在反应机理仍然不清楚.本研究采用自主搭建的电强化-DNRA(E-DNRA)连续流式反应器,利用闭合回路电子流构建单个细菌周围强还原环境,以提高细菌周围局部微环境的电子供体比例,进而提高DNRA效率.据此,进一步深入探究了电子流强化DNRA过程的内在反应机理及DNRA功能菌的群落特征.结果表明,电阻为50Ω,水力停留时间为20 h,电极面积为847 cm^(2)时可以有效提高硝酸盐异化还原为铵(DNRA)的活性,反应器中c(NH_(4)^(+))/c(NO_(3)^(-))最高可达79.1%.胞外聚合物(EPS)、电子传递系统活性(ESTA)及NADH分析表明,电子流促进了电极生物膜上各菌属的生物的活性.宏基因分析结果表明,反应器内Thauera、Azonexus、Cupriavidus、Pseudomonas为主要功能菌属.以nrf A基因编码的细胞色素c型亚硝酸盐还原酶在电子流的作用下由0.18%升高至32.84%,促进了细胞周质内DNRA过程的发生;以nir B基因编码的NADH依赖型亚硝酸盐还原酶在电子流的作用下由6.05%升高至12.71%,强化了细胞质内DNRA过程的发生.研究结果将为开发强化的DNRA技术提供新策略. Nitrate allotropic reduction to ammonium(DNRA)is an important process in the nitrogen cycle,and DNRA is capable of reducing nitrate to ammonium and is an important pathway for retaining reactive nitrogen in natural ecosystems.However,the efficiency of DNRA is still low and its intrinsic reaction mechanism remains unclear.In this study,an electro-enhanced-DNRA(E-DNRA)continuous flow reactor was built in-house to construct a strong reducing environment around individual bacteria using closed-loop electron flow in order to increase the proportion of electron donors in the local microenvironment around the bacteria and thus improve the DNRA efficiency.Accordingly,the intrinsic reaction mechanism of the electron flow-enhanced DNRA process and the community characteristics of DNRA functional bacteria were further investigated in depth.The results showed that the activity of nitrate isomerization reduction to ammonium(DNRA)could be effectively enhanced at a resistance of 50Ω,a hydraulic residence time of 20 h,and an electrode area of 847 cm2,and the c(NH_(4)^(+))/c(NO_(3)^(-))in the reactor was up to 79.1%.Extracellular polymer(EPS),electron transfer system activity(ESTA),and NADH analysis showed that electron flow promoted the activity of organisms of each genus on the electrode biofilm.Macrogenic analysis showed that Thauera,Azonexus,Cupriavidus,and Pseudomonas were the main functional genera in the reactor.The cytochrome c-type nitrite reductase encoded by nrfA gene increased from 0.18%to 32.84%in response to electron flow,which promoted the occurrence of DNRA process in the periplasm;the NADH-dependent nitrite reductase encoded by nirB gene increased from 6.05%to 12.71%in response to electron flow,which enhanced the occurrence of DNRA process in the cytoplasm.The results of the study will provide new strategies for the development of enhanced DNRA technology.
作者 张涵瑞 朱超 郭中瑞 刘春雷 祝贵兵 ZHANG Hanrui;ZHU Chao;GUO Zhongrui;LIU Chunlei;ZHU Guibing(School of Environmental Science and Engineering,Shaanxi University of Science&Technology,Xi’an 710021;State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environment Sciences,Chinese Academy of Sciences,Beijing 100085)
出处 《环境科学学报》 CAS CSCD 北大核心 2023年第4期217-227,共11页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.52000176) 陕西省重点研发计划项目(No.2020NY-135)。
关键词 硝酸盐异化还原为铵(DNRA) 电活性菌 电子流 生物代谢通路 宏基因组 nitrate dissimilatory reduction to ammonium(DNRA) electroactive bacteria electron flow biological metabolic pathways metagenome
  • 相关文献

参考文献9

二级参考文献113

  • 1丁倩,曹英秀,李锋,林童,陈媛媛,陈正,宋浩.“共轭聚合物-产电菌”复合生物电极构建及其在微生物燃料电池中的应用[J].生物工程学报,2021,37(1):1-14. 被引量:2
  • 2Fengyu Gao,Xiaolong Tang,Honghong Yi,Shunzheng Zhao,Wenjuan Zhu,Yiran Shi.Mn2NiO4 spinel catalyst for high-efficiency selective catalytic reduction of nitrogen oxides with good resistance to H2O and SO2 at low temperature[J].Journal of Environmental Sciences,2020,32(3):145-155. 被引量:5
  • 3徐继荣,王友绍,殷建平,王清吉,张凤琴,何磊,孙翠慈.珠江口入海河段DIN形态转化与硝化和反硝化作用[J].环境科学学报,2005,25(5):686-692. 被引量:70
  • 4Woods DD. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 1938, 32(11): 2000-2012.
  • 5Chèneby D, Hartmann A, Hénault C, et al. Diversity of denitrifying microflora and ability to reduce N2O in two soils[J]. Biology and Fertility of Soils, 1998, 28(1): 19-26.
  • 6Kelso BHL, Smith RV, Laughlin RJ, et al. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation[J]. FEMS Microbiology Ecology, 1997, 63(12): 4679-4685.
  • 7Darwin A, Hussain H, Griffiths L, et al. Regulation and sequence of the structural gene for cytochrome C552 from Escherichia coli —— not a hexahaem but a 50 kD tetrahaem nitrite reductase[J]. Molecular Microbiology, 1993, 9(6): 1255-1265.
  • 8Tiedje JM, Sexstone AJ, Myrold DD, et al. Denitrification: ecological niches, competition and survival[J]. Antonie Van Leeuwenhoek, 1982, 48(6): 569-583.
  • 9Sayama M, Risgaard-Petersen N, Nielsen LP, et al. Impact of bacterial NO3 - transport on sediment biogeochemistry[J]. Applied and Environmental Microbiology, 2005, 71(11): 7575-7577.
  • 10Zopfi J, Kj?r T, Nielsen LP, et al. Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle[J]. Applied and Environmental Microbiology, 2001, 67(12): 5530-5537.

共引文献65

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部