摘要
The electrochemical N_(2)reduction reaction(NRR)represents a green and sustainable route for NH_(3)synthesis under ambient conditions.However,the mechanism of N_(2)activation in the electrocatalytic NRR remains unclear.Herein,we found that the high spin state Mn^(3+)-Mn^(3+)pairs induced by oxygen vacancy in MnO_(2)nanosheets greatly enhance the catalytic activities.The strong electron transfer between d orbital of Mn and orbital of N2 forces the N_(2)to be of radical nature,which activates the hydrogenation process and weakens the N≡N bond.Based on the density functional theory(DFT)calculation results,we precisely designed mesoporous MnO_(2)nanosheets with rich oxygen vacancies via using methyltriphenylphosphonium bromide(MPB)to induce more Mn^(3+)-Mn^(3+)pairs(Mn^(3-3)-MnO_(2)),which can achieve a fairly high ammonia yield of up to 147.2μg·h^(−1)·mgcat−1.at−0.75 V vs.reversible hydrogen electrode(RHE)and a high Faradaic efficiency(FE)of 11%.Furthermore,these mesoporous MnO_(2)nanosheets exhibit the superior durability with negligible changes in both NH3 yield and FE after a consecutive 6-recycle test and the current density electrolyzed over a 24-hour period.Our findings offer an approach to designing highly active transition metal catalysts for electrocatalytic nitrogen reduction.
基金
financial support from the National Nature Science Foundation of China(No.22122113)
National Key Research and Development Program of China(No.2021YFB4000405).