摘要
Electrochemical NO reduction reaction(NORR)to generate NH_(3)emerges as a fascinating approach to achieve both NO pollution mitigation and sustainable NH_(3)synthesis.Herein,we demonstrate that single-atomic Cu anchored on MoS_(2)(Cu_(1)/MoS_(2))comprising Cu_(1)-S_(3)motifs can serve as a highly efficient NORR catalyst.Cu1/MoS_(2)exhibits an NH_(3)yield rate of 337.5μmol·h^(−1)·cm^(−2)with a Faradaic efficiency of 90.6%at−0.6 V vs.reversible hydrogen electrode(RHE).Combined experiments and theoretical calculations reveal that Cu1-S3 motifs enable the effective activation and hydrogenation of NO through a mixed pathway and simultaneously retard proton coverage,contributing to the high activity and selectivity of Cu1/MoS_(2)for the NORR.
基金
supported by the National Natural Science Foundation of China(No.52161025)
Fundamental Researches Top Talent Program of Lanzhou Jiaotong University(No.2022JC03).