期刊文献+

Lamellar-assembled PdNi super-nanosheets as effective oxygen redox dual-electrocatalysts for rechargeable Zn-air batteries

原文传递
导出
摘要 Exploration of bifunctional electrocatalysts toward effective oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is pivotal for developing high-efficiency and rechargeable metal-air batteries but remains great challenging.Here we elaborately synthesize lamellar-assembled PdNi super-nanosheets(SNSs)with an optimized Pd/Ni molar ratio to serve as attractive ORR and OER bifunctional electrocatalysts for rechargeable high-powered Zn-air batteries(ZABs).The products are layer-by-layer stackings of ultrathin PdNi nanosheet motifs.On the drastically extended two-dimensional(2D)surface,the inserted Ni atoms can substantially lower down the d-band center of surface Pd toward improved ORR kinetics and concurrently create oxytropic NiOx sites to adsorb–OH groups for promoting the reverse OER electrocatalysis.Specifically,the ORR mass activity and specific activity of the primary Pd_(92)Ni_(8)SNSs attain 2.5 A·mg^(−1)and 3.15 mA·cm^(−2),which are respectively 14 and 9 times those of commercial Pt/C.Meanwhile,the OER activity and stability of Pd_(92)Ni_(8)SNSs/C distinctly outperform those of the RuO_(2)benchmark,suggesting excellent reversible oxygen electrocatalysis.The power density of the ZAB with Pd_(92)Ni_(8)SNSs/C as the air cathode is 2.7 times higher than that by Pt/C benchmark.Significantly,it can last for over 150 h without significant performance degradation during the charge–discharge cycle test.This work showcases a feasible strategy for developing self-assembled multimetallic 2D nanomaterials with excellent bifunctional catalytic performances toward energy conversion applications.
出处 《Nano Research》 SCIE EI CSCD 2023年第2期2163-2169,共7页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(No.22171093) the Natural Science Foundation of Fujian Province(Nos.2022J05058 and 2022J02008) the Scientific Research Funds of Huaqiao University(No.605-50Y21048).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部