期刊文献+

Grain boundary boosting the thermal stability of Pt/CeO_(2)thin films

原文传递
导出
摘要 Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems.Here we use in-situ ambient-pressure X-ray photoemission spectroscopy(APXPS)to experimentally determine the role of grain boundary in the thermal stability of platinum doped cerium oxide(Pt/CeO_(2)).The grain boundaries were introduced in Pt/CeO_(2)thin films by pulsed laser deposition without significantly change of the surface microstructure.The defect level was tuned by the strain field obtained using a highly/low mismatched substrate.The Pt/CeO_(2)thin film models having well defined crystallographic properties but different grain boundary structural defect levels provide an ideal platform for exploring the evolution of Pt–O–Ce bond with changing the temperature in reducing conditions.We have direct demonstration and explanation of the role of Ce^(3+)induced by grain boundaries in enhancing Pt2+stability.We observe that the Pt^(2+)–O–Ce^(3+)bond provides an ideal coordinated site for anchoring of Pt^(2+)ions and limits the further formation of oxygen vacancies during the reduction with H_(2).Our findings demonstrate the importance of grain boundary in the atomic-scale design of thermally stable catalytic active sites.
出处 《Nano Research》 SCIE EI CSCD 2023年第2期3278-3286,共9页 纳米研究(英文版)
基金 The APXPS experiments were performed at BL02B01 of SSRF with the approval of the Proposal Assessing Committee of SiP.ME2 platform project(Proposal No.2019-SSRF-PT-011613) the Natural Science Foundation of China(No.11227902) the Shanghai Key Research Program(No.20ZR1436700).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部