期刊文献+

Porous 3D carbon-based materials:An emerging platform for efficient hydrogen production 被引量:2

原文传递
导出
摘要 Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials(zero-dimensional(0D)/one-dimensional(1D)/two-dimensional(2D)),enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials.To improve hydrogen production,attempts are made to enlarge the surface area of porous three-dimensional(3D)carbon-based materials,achieve uniform interconnected porous channels,and enhance their stability,especially under extreme conditions.In this review,the structural advantages and performance improvements of porous carbon nanotubes(CNTs),g-C_(3)N_(4),covalent organic frameworks(COFs),metal-organic frameworks(MOFs),MXenes,and biomass-derived carbon-based materials are firstly summarized,followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods.These include,for example,photo/electrocatalytic hydrogen production,release from methanolysis of sodium borohydride,methane decomposition,and pyrolysis-gasification.The role that the active sites of porous carbon-based materials play in promoting charge transport,and enhancing electrical conductivity and stability,in a hydrogen production process is discussed.The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected.
出处 《Nano Research》 SCIE EI CSCD 2023年第1期127-145,共19页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(No.62004143) the Central Government Guided Local Science and Technology Development Special Fund Project(No.2020ZYYD033) the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology(No.GCP202101) the Natural Science Fund of Hubei Province(No.2021CFB133).
  • 相关文献

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部