期刊文献+

自动色阶与双向特征融合的水下目标检测算法 被引量:3

Underwater Target Detection Algorithm Based on Automatic Color Level and Bidirectional Feature Fusion
原文传递
导出
摘要 水下环境存在光线差、噪声大等复杂情况,导致传统水下目标检测方法检测精度较低、漏检率较高.针对上述问题,在现阶段通用的Faster R-CNN的基础上,提出一种自动色阶与双向特征融合的水下目标检测算法.首先,采用自动色阶对水下模糊图像进行增强处理;其次,采用PAFPN进行双向特征融合,以增强对浅层信息的表达能力;然后,在训练前后均引入柔性非极大值抑制(Soft-NMS)算法,来修正并生成候选目标区域;最后,采用FocalLoss函数,解决正负样本分配不均衡的问题.实验结果表明,所提算法在URPC2020数据集上的检测准确率可达59.7%,召回率可达70.5%,相比现阶段通用的Faster R-CNN算法,分别提高了 5.5个百分点和8.4个百分点,有效提高了水下目标检测的准确率. Many complex elements such as poor light and high noise in the underwater environment result in low detection accuracy and high missed detection rate in traditional underwater target detection methods.To address these issues,based on the current general Faster RCNN algorithm,this study proposes an underwater target detection algorithm based on automatic color level and bidirectional feature fusion.First,the automatic color level was used to enhance a blurred underwater image.Second,the path aggregation feature pyramid network(PAFPN)was introduced for feature fusion to enhance the expression for shallow information.Third,the soft nonmaximum suppression(SoftNMS)algorithm was introduced to modify and generate the candidate target regions before and after training.Finally,the FocalLoss function was used to rectify the issue of an unbalanced distribution of positive and negative samples.The experimental results show that the proposed algorithm can reach a detection accuracy of 59.7%on the URPC2020 dataset and a recall rate of 70.5%,which are 5.5 percentage points and 8.4 percentage points respectively higher than the current general Faster RCNN algorithm,effectively improving the average accuracy of underwater target detection.
作者 杨婷 高武奇 王鹏 李晓艳 吕志刚 邸若海 Yang Ting;Gao Wuqi;Wang Peng;Li Xiaoyan;LüZhigang;Di Ruohai(School of Ordnance Science and Technology,Xi’an Technological University,Xi’an 710021,Shaanxi,China;School of Computer Science and Technology,Xi’an Technological University,Xi’an 710021,Shaanxi,China;Development Planning Office,Xi’an Technological University,Xi’an 710021,Shaanxi,China;School of Electronic Information Engineering,Xi’an Technological University,Xi’an 710021,Shaanxi,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第6期122-133,共12页 Laser & Optoelectronics Progress
基金 国家自然科学基金(62171360) 陕西省科技厅重点研发计划(2022GY-110)。
关键词 目标检测 图像增强 特征金字塔 柔性非极大值抑制 FocalLoss函数 target detection image enhancement feature pyramid soft nonmaximum suppression FocalLoss function
  • 相关文献

参考文献14

二级参考文献54

  • 1林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74. 被引量:46
  • 2王猛,杨杰,白洪亮.基于区域分割的水下目标实时识别系统[J].计算机仿真,2005,22(8):101-105. 被引量:5
  • 3陈全胜,赵杰文,张海东,方明.利用计算机视觉识别茶叶的色泽类型[J].江苏大学学报(自然科学版),2005,26(6):461-464. 被引量:45
  • 4杨放琼,谭青,彭高明.基于长基线系统深海采矿ROV精确定位[J].海洋工程,2006,24(3):95-99. 被引量:10
  • 5Sen S,Konkel W H,Tighe S J,et al.Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-bridgman process.J Cryst Growth,1987,86:111
  • 6Parfeniuk C,Weinberg F,Samarasekera I V,et al.Measured critical resolved shear stress and calculated temperature and stress fields during growth of CdZnTe.J Cryst Growth,1992,119:261
  • 7El Mokri A,Triboulet R,Lusson A,et al.Growth of large,high purity,low cost,uniform CdZnTe crystals by the cold travelling heater method.J Cryst Growth,1994,138:168
  • 8Kuppurao S,Derby J J.Designing thermal environments to promote convex interface shapes during the vertical Bridgman growth of cadmium zinc telluride.J Cryst Growth,1997,172:350
  • 9Cerny R,Kalbac A,Prikryl P.Computational modeling ofCdZnTe crystal growth from the melt.Computational Materials Science,2000,17:34
  • 10Martinez-Tomas C,Munoz V.CdTe crystal growth process by the Bridgman method:Numerical simulation.J Cryst Growth,2001,222:435

共引文献236

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部