期刊文献+

移动机器人轨迹跟踪控制模型的研究与设计 被引量:2

Research and Design of Trajectory Tracking Control Model for Mobile Robot
下载PDF
导出
摘要 为了提高AGV运动控制精度,设计了一种基于AGV运动学、动力学模型相组合的轨迹跟踪控制算法。首先以差速驱动型AGV为研究对象,利用Kane方程建立AGV动力学模型;然后分析轨迹跟踪误差问题并建立AGV误差模型,进而构造Lyapunov函数并设计AGV运动学控制律;再将其作为动力学控制律设计的输入,引入反演法思想和Lyapunov函数,设计虚拟速度控制律,推导证明了AGV跟踪误差最终全局渐进稳定且趋于零;最后通过仿真分析可知,设计的AGV轨迹跟踪控制律能够消除误差,可以跟踪期望轨迹行驶,具有快速响应性和稳定性。 In order to improve the accuracy of AGV motion control,a trajectory tracking control algorithm based on the combination of AGV kinematics and dynamic model is designed in this paper.Firstly,the differential drive AGV is taken as the research object,and the dynamic model of AGV is established by using the Kane equation.Then,the trajectory tracking error problem is analyzed to establish the AGV error model;and then,the Lyapunov function is constructed to design the AGV kinematics control law,which is used as the input of the dynamic control law design.The inversion method and Lyapunov function are introduced to design the virtual speed control law,and the derivation proves that the AGV tracking error is finally globally asymptotically stable and tends to zero.Finally,the simulation analysis shows that the AGV trajectory tracking control law designed in this paper can eliminate errors,track the desired trajectory,and it has fast response and stability.
作者 何翠 刘媛 HE Cui;LIU Yuan(Xigu Power Supply Branch of State Grid Lanzhou Power Supply Company,Lanzhou Gansu 730060,China)
出处 《机械研究与应用》 2023年第2期47-51,57,共6页 Mechanical Research & Application
关键词 AGV KANE方程 运动学 动力学轨迹跟踪 AGV Kane equation dynamics kinematic trajectory tracking
  • 相关文献

参考文献1

二级参考文献11

  • 1王莉,王庆林.Backstepping设计方法及应用[J].自动化博览,2004,21(6):57-61. 被引量:18
  • 2胡跃明,用其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10. 被引量:26
  • 3闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55. 被引量:104
  • 4Kolmanovsky H,McClamroch N H. Developments in Nonholonomic Control Systems [J]. IEEE Control Systems Magazine, 1995,15(6) :20 - 36.
  • 5Brockett R W. Asymptotic Stability and Feedback Stabilization[M]. Differential Geometric Control Theory, Boston: Birkhauser, 198:3.
  • 6Kanayama Y, Kimura Y, Miyazaki F, et al. A Stable Tracking Control Method for an Autonomous Mobile Robot [A]. Proceedings of IEEE Conference on Robotics and Automation [C]. Cincinnati: IEEE Computer Society Press, 1990: 384 - 389.
  • 7Jiang Z P,Nijmeijer H. Tracking Control of Mobile Robots: A Case Study in Backstepping [J]. Automatica, 1997, 33 (7):1 393-1 399.
  • 8Campion G, Bastin G, D' Andrea - Novel B. Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots [J]. IEEE Transactions on Robotics and Automation, 1996,12 (1): 47-62.
  • 9Siegwart R, Nourbakhsh I R. Introduction to Autonomous Mobile Robots [M]. Cambridge, Massachusetts, USA: The MIT Press, 2004.
  • 10吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331. 被引量:102

共引文献7

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部