摘要
传统的轴承故障诊断方法大多直接从原始振动信号中降维,仅利用时域特征诊断故障,存在故障特征单一的问题。针对上述问题,提出基于权重自适应特征融合的轴承故障诊断方法。首先对原始故障信号进行时频分析,得到故障的频域和时频域信息,然后建立双通道特征提取网络模型,分别对频域特征和时频域特征进行提取,最后提出特征自适应加权算法对不同维度特征动态加权,实现特征加权融合诊断。采用凯斯西储大学和帕德博恩大学轴承故障数据集进行实验,在测试集上最佳准确率为99.75%和98.57%,且能保持较好的收敛速度,有效提高了轴承的故障诊断效率。
Most of the traditional bearing fault diagnosis methods directly reduce the dimension from the original vibration signal,and use the time-domain characteristics to diagnose the fault,which has the problem of single fault characteristics.Aiming at the above problems,a bearing fault diagnosis method based on adaptive weight feature fusion was proposed.Firstly,the time-frequency analysis of the original fault signal was carried out to obtain the frequency-domain information and time-frequency-domain information of the fault.Then,a dual channel feature extraction network model was established to extract the frequency-domain features and time-frequency-domain features respectively.Finally,a feature adaptive weighting algorithm was proposed to weight the features of different dimensions to realize the feature weighted fusion diagnosis.Experiments were carried out on the bearing fault data sets of Case Western Reserve University and Paderborn University.The best accuracies were 99.75%and 98.57%on the test sets,maintaining a good convergence speed,and the efficiency of bearing fault diagnosis was effectively improved.
作者
刘晶
梁佳杭
封晨
季海鹏
LIU Jing;LIANG Jiahang;FENG Chen;JI Haipeng(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300400,China;Hebei Data Driven Industrial Intelligent Engineering Research Center,Tianjin 300400,China;Tianjin Development Zone Jingnuo Data Technology Co.Ltd.,Tianjin 300400,China;TOEC Technology Co.Ltd.,Tianjin 300400,China;School of Materials Science and Engineering,Hebei University of Technology,Tianjin 300400,China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2023年第4期54-60,共7页
Journal of Zhengzhou University:Natural Science Edition
基金
2021年度京津冀基础研究合作专项项目(E2021203250)
2019年天津市人工智能重大专项(19ZXZNGX00040)。
关键词
轴承故障诊断
特征融合
权重自适应
bearing fault diagnosis
feature fusion
weight adaptation