摘要
Amorphous oxide semiconductors(AOS)have unique advantages in transparent and flexible thin film transistors(TFTs)applications,compared to low-temperature polycrystalline-Si(LTPS).However,intrinsic AOS TFTs are difficult to obtain field-effect mobility(μFE)higher than LTPS(100 cm^(2)/(V·s)).Here,we design ZnAlSnO(ZATO)homojunction structure TFTs to obtainμFE=113.8 cm^(2)/(V·s).The device demonstrates optimized comprehensive electrical properties with an off-current of about1.5×10^(-11)A,a threshold voltage of–1.71 V,and a subthreshold swing of 0.372 V/dec.There are two kinds of gradient coupled in the homojunction active layer,which are micro-crystallization and carrier suppressor concentration gradient distribution so that the device can reduce off-current and shift the threshold voltage positively while maintaining high field-effect mobility.Our research in the homojunction active layer points to a promising direction for obtaining excellent-performance AOS TFTs.
基金
supported by National Natural Science Foundation of China(No.U20A20209)
Zhejiang Provincial Natural Science Foundation of China(LD19E020001)
Zhejiang Provincial Key Research and Development Program(2021C01030)
"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(2021C01SA301612)。