摘要
当前,图像分割处理中存在过程繁琐、效率低下等问题,加上图像超像素形状及大小不均等影响因素,难以适应高性能计算要求。基于此,本文提出了简单线性迭代聚类改进算法。首先预处理获得像素信息,减少算法执行过程中的计算耗时;其次,通过一系列算法优化,降低访存时间,使其更有利于后续并行化的操作;最后依据像素点的处理之间互不产生依赖的情况,使用向量化和并行化的手段,对算法进行整体加速,进一步提升算法效率。实验结果表明,本文提出SLIC改进算法相比基准模型,在计算速率和算法性能方面得到提升。
Nowadays,there is a cumbersome and inefficient process in image segmentation processing,and it is difficult to adapt to the requirements of high-performance computing due to the unequal shape and size of image superpixels.Based on this,this paper proposes a simple linear iterative clustering(SLIC)improved algorithm.First of all,the pixel information is preprocessed to reduce the calculation time in the process of algorithm execution;Secondly,through a series of algorithm optimizations,the access time is reduced,and it is more conducive to subsequent parallelization operations;Finally,according to the situation that there is no dependence between the processing of pixels,vectorization and parallelization are used to accelerate the algorithm as a whole to further improve the efficiency of the algorithm.Experimental results show that compared with the benchmark model,the SLIC improved algorithm is proposed to improve the calculation rate and algorithm performance.
作者
阴爱英
马云莺
YIN Aiying;MA Yunying(Department of Computer Engineering,Zhicheng College of Fuzhou University,Fuzhou,China,350002)
出处
《福建电脑》
2023年第5期35-40,共6页
Journal of Fujian Computer
基金
福建省自然科学基金面上项目(No.2022J01116)资助。
关键词
并行计算
数字图像处理
超像素
简单线性迭代聚类
Parallel Computing
Digital Image Processing
Super-pixels
Simple Linear Iterative Clustering