期刊文献+

A K-Means Clustering-Based Multiple Importance Sampling Algorithm for Integral Global Optimization

原文传递
导出
摘要 In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期157-175,共19页 中国运筹学会会刊(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部