期刊文献+

Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number 被引量:1

原文传递
导出
摘要 A fractional matching of a graph G is a function f: E(G)→[0,1] such that for each vertex v, ∑eϵΓG(v)f(e)≤1.. The fractional matching number of G is the maximum value of ∑e∈E(G)f(e) over all fractional matchings f. Tian et al. (Linear Algebra Appl 506:579–587, 2016) determined the extremal graphs with minimum distance Laplacian spectral radius among n-vertex graphs with given matching number. However, a natural problem is left open: among all n-vertex graphs with given fractional matching number, how about the lower bound of their distance Laplacian spectral radii and which graphs minimize the distance Laplacian spectral radii? In this paper, we solve these problems completely.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期189-196,共8页 中国运筹学会会刊(英文)
基金 This work is supported by the Science and Technology Program of Guangzhou,China(No.202002030183) the Guangdong Province Natural Science Foundation(No.2021A1515012045) the Qinghai Province Natural Science Foundation(No.2020-ZJ-924).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部