摘要
利用单形的"偏正度量"和几何不等式理论,研究欧氏空间E^(n)中n维单形的体积不等式的稳定性问题,证明了两个不等式是稳定的,并给出它们稳定性版本,进而推广这两个不等式.
Using the deviation regular metric of a simplex and theory of metric geometry to study the stability of an n-simplex in the Euclidean space E^(n).Two geometric inequalities are stable,and the stability versions of inequalities are given,also improved.
作者
孙玉婷
王文
杨世国
SUN Yu-ting;WANG Weng;YANG Shi-guo(College of General Education,Anhui Wenda Information Engineering College,Hefei 231201,Anhui,China;School of Mathematics and Statistics,Hefei Normal University,Hefei 230601,Anhui,China;Institute of International Education,Anhui Xinhua University,Hefei 230088,Anhui,China)
出处
《喀什大学学报》
2021年第6期7-10,共4页
Journal of Kashi University
基金
安徽省自然科学基金项目“沿Ricci流下非线性抛物方程解的二阶梯度估计和Hessian矩阵估计”(1908085QA04)
安徽文达信息工程学院校级科研项目“欧氏空间单形的几何不等式稳定性”(XZR2019B02).
关键词
偏正度量
几何
单形
稳定性
deviation regular metric
inequality
simplex
stability