摘要
为研究多年冻土区输电线塔基锥柱基础在不同季节施工条件下其地温的整体回冻过程,以及不同季节施工对多年冻土的扰动特点,从保持多年冻土地温稳定性的角度优化大开挖类基础施工时期,采用数值模拟的方法,以青藏直流输电工程为背景,利用查拉坪地区地质及气象资料,并选择了典型月份(1月、4月、7月和10月)对锥柱基础不同季节施工后早期地温场进行了计算分析。结果表明:秋冬季(10月和1月)施工后,锥柱基础周围土体将保持冻结,其中1月施工后最快10 d回填区土体和天然冻土的温度差异即可消失,回填土热扰动较小;春夏季(4月和7月)施工会增大回冻期活动层深度和基础底部的融化深度,特别是7月施工可使活动层深度降低至基底(4.0 m),而4月施工由于增高了回填土土体温度,导致整个回冻时间长达195 d,不利于基础的重新冻结和后续工作的开展。考虑到10月后外界气温逐渐降低,因此,10月至次年1月可以作为多年冻土区锥柱基础的最佳施工期。
In order to study the overall refreezing process of ground temperature of transmission line foundation in different seasons and the disturbance characteristics of construction on permafrost in different seasons,the construction period of large-scale excavation type foundation was optimized from the perspective of maintaining ground temperature stability of permafrost.Based on the Qinghai-Tibet DC power transmission project,this paper uses the geological and meteorological data of Chalaping area and the typical months(January,April,July and October)are selected to calculate and analyze the early ground temperature field of cone-cylindrical foundation after construction in different seasons.The results show that after the construction in autumn and winter(October and January),the soil around the cone-cylindrical foundation will remain frozen,and the temperature difference between the soil in the backfill area and the natural frozen soil can disappear within ten d after the construction in January,and the thermal disturbance of the backfill soil is small.Construction in spring and summer(April and July)will increase the depth of the active layer and the thawing depth of permafrost during the thawing period,especially the construction in July can reduce the depth of active layer to the basement(4.0 m),while the construction in April can increase the temperature of the backfill soil and lead to the refreezing time is as long as 195 d which is not conducive to the refreezing of the backfill and the development of follow-up work.Considering that the outside temperature gradually decreases after October,October to January in the next year can be used as the best construction period for the cone-cylindrical foundation in the permafrost region.
作者
张军
张泽
郭磊
谢春磊
金豆豆
翟金榜
Zhang Jun;Zhang Ze;Guo Lei;Xie Chunlei;Jin Doudou;Zhai Jinbang(School of Civil Engineering/Institute of Cold Regions Science and Technology,Northeast Forestry University,Harbin 150040,China;Northeast China Observatory and Research Station of Permafrost Geo-Environment(Northeast Forestry University),Ministry of Education,Harbin 150040,China;Coordinated Innovation Center for Permafrost Environment,Road Construction and Maintenance in Northeast China(Northeast Forestry University),Harbin 150040,China;State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Science,Lanzhou 730000,China;Quality Monitoring and Appraisal Station for Traffic Construction Project of Inner Mongolia Autonomous Region,Hohhot 010051,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China)
出处
《吉林大学学报(地球科学版)》
CAS
CSCD
北大核心
2023年第2期502-513,共12页
Journal of Jilin University:Earth Science Edition
基金
国家自然科学基金项目(41771078,41801039)
国家自然科学基金委员会(NSFC)与俄罗斯基础研究基金会(RFBR)合作交流项目(42011530083)。
关键词
多年冻土区
锥柱基础
施工季节
回冻温度场
施工时间
permafrost
cone-cylindrical foundation
construction season
refreezing temperature field
construction time