期刊文献+

基于涡旋光场水下激光雷达空间滤波技术研究 被引量:1

A spatial filtering technology in underwater lidar based on vortex light field
下载PDF
导出
摘要 基于水下激光雷达目标回波和多次散射杂波空间相干性的差异,利用涡旋光场形成的特点,使用螺旋相位板附加环状掩膜板形成空间滤波装置,将目标反射信号与多次散射信号进行空间分离。由于目标反射信号具有良好的空间相干性,经过螺旋相位板后会形成涡旋光,而散射杂波由于其空间相干性被多次散射破坏,会按照散射规律呈现类高斯的中间强边缘弱的分布。利用环状掩膜板只容许涡旋光通过,到达探测器,从而降低了散射对测距的影响。上述空间滤波装置应用于载波调制相位测距及脉冲测距水下激光雷达系统中,均可以大幅提高浑浊水体中目标的测距精度。 Based on the difference in spatial coherence between target echo and multi-scattering clutter in underwater lidar system,a spiral phase plate and an additional ring mask plate were proposed to form a spatial filter to separate the target reflected signal from the multi-scattered clutters.Due to the good spatial coherence of the target reflected signal,vortex light will be formed after the target reflected signal passing through the spiral phase plate,while the spatial coherence of scattering clutter will be destroyed by multiple scattering and presented a Gaussian-like distribution according to the scattering law.The use of ring-shape mask plate only allows vortex light to pass through and reach the detector,thereby reducing the effect of scattering on ranging.The above-mentioned spatial filtering device is applied to radar-lidar and pulse ranging underwater lidar systems,which can greatly improve the ranging accuracy of targets in turbid water.
作者 李朝锋 王振 陈晨 李杰 LI Chaofeng;WANG Zhen;CHEN Chen;LI Jie(The 34th Research Institute of China Electronics Technology Group Corporation,Guilin 541004,China;Beijing UCAS Technology Co.,Ltd,Beijing 100190,China)
出处 《光学技术》 CAS CSCD 北大核心 2023年第2期211-214,共4页 Optical Technique
关键词 激光雷达 水下探测 散射 轨道角动量 相干性 lidar underwater detection scattering orbital angular momentum coherence
  • 相关文献

参考文献1

二级参考文献61

  • 1郁道银,谈恒英.工程光学[M].北京:机械工业出版社,201l:82-83.
  • 2Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-123.
  • 3Allen L, Beijersbergen M W, Spreeuw R J C, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.
  • 4Leach J, Yao E, Padgett M. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6(1): 71.
  • 5Curtis J E, Grier D G. Structure of optical vortices[J]. Physical Review Letters, 2003, 90(13): 133901.
  • 6Courtial J. Self-imaging beams and the Guoy effect[Jl. Optics Communications, 1998, 151(1-3): 1-4.
  • 7Mair A, Vaziri A, Weihs G, et al.. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.
  • 8Beijersbergen M W, Allen L, van der Veen H E L O, et al.. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1-3): 123-132.
  • 9Porras M A, Borghi R, Santarsiero M. Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams[J]. Journal of the Optical Society of America A, 2001, 18(1): 177-184.
  • 10Gutirez-Vega J C, Iturbe-Castillo M D, Ch(2ez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.

共引文献8

同被引文献26

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部