期刊文献+

基于深度可分离卷积的表情识别改进方法 被引量:1

High-precision expression recognition method for complex illumination
下载PDF
导出
摘要 针对传统表情识别存在相似表情识别精度不高,且深度学习模型参数量巨大问题,提出一种改进的残差网络模型。通过引入深度可分离卷积核,减少了模型的参数量;引入压缩激励模块,改善了模型通道的加权关系;通过将中心损失引入联合算法设计中,提高了相似表情之间的区分度。实验结果表明,识别算法提升了相似表情的区分精度,且较好的控制了模型的参数量。模型在3个公开数据集上的准确率分别达到了97.57%、96.24%、94.09%。 To solve the problems of low accuracy and large number of deep learning model parameters in traditional facial expression recognition,an improved residual network model was proposed.The depth separable convolution kernel was introduced to reduce the number of model parameters,and the compression excitation module was introduced to improve the weighted relationship of model channels.The center loss was introduced into the design joint algorithm to improve the degree of discrimination between similar expressions.The experimental results show that the recognition algorithm improves the discrimination accuracy of similar expressions and controls the number of parameters in the model well.The accuracy of the model on three public data sets is 98.17%,97.22%and 94.09%.
作者 李嘉乾 张雷 LI Jiaqian;ZHANG Lei(Institute of Mechanical Engineering,Jiangsu University of Technology,Changzhou Jiangsu 213001,China)
出处 《智能计算机与应用》 2023年第5期58-63,69,共7页 Intelligent Computer and Applications
基金 常州市科技项目(CJ20210070) 江苏省教育厅未来网络科研基金(FNSRFP-2021-YB-35)。
关键词 人脸表情识别 残差网络 深度可分离卷积 压缩激励模块 中心损失 facial expression recognition residual network depthwise separable convolution squeeze-and-Excitation module center loss
  • 相关文献

参考文献5

二级参考文献25

  • 1Khan R A, Meyer A, Konik H, et al. Framework ibr Reliable, Real-Time Facial Expression Recognition for l.ow Resolution Ima- ges. Pattern Recognition I.etters, 2013, 34(10) : 1159-1168.
  • 2Zavaschi T H H, Britto Jr A S, Oliveira L E S, et al. Fusion of Feature Sets and Classifiers for Facial Expression Recognition. Expert Systems with Applications, 2013, 40 (2) : 646-655.
  • 3Asthana A, de la Hunty M, Dhall A, et al. Facial Performance Transfer via Deformable Models and Parametric Correspondence. IEEE Trans on Visualization and Computer Graphics, 2012, 18 (9): 1511-1519.
  • 4Wan S H, Aggarwal J K. Spontaneous Facial Expression Recogni- tion: A Robust Metric Learning Approach. Pattern Recognition, 2014, 47(5) : 1859-18681.
  • 5Sankar A, Shechtman E, et al. Being John Malkovieh// Proc of the 11 th European Conference on Com- puter Vision. Heraklion, Greece, 2010 : 341-353.
  • 6Dhall A, Asthana A, Goecke R. A SSIM-Based Approach for Finding Similar Facial Expressions // Proc of the IEEE Interna- tional Conference on Automatic Face and Gesture Recognition and Workshops. Santa Barbara, USA, 2011 : 815-820.
  • 7Domaika F, Moujahid A, Raducanu B. Facial Expression Recogni-tion Using Tracked Facial Actions: Classifier Performance Analy- sis. Engineering Applications of Artificial Intelligence, 2013, 26 ( 1 ): 467-477.
  • 8Stegmann M B. The AAM-API: An Open Source Active Appear- ance Model Implementation//Proe of the 6th International Confer- ence on Medical Image Computing and Computer-Assisted Interven- tion. Montreal, Canada, 2003:951-952.
  • 9Hu Y X, Zeng Z H, Yin L J, et al. A Study of Non-frontal-view Facial Expressions Recognition // Proc of the 19th International Conference on Pattern Recognition. Tampa, USA, 2008:1-4.
  • 10Frank W. Facial Expressions and Emotion Database. [ EB/OL ]. [2013-12-01 ] . http://cotesys, mmk. e-technik, tu-muenchen. de/isg/content/feed-database.

共引文献35

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部