期刊文献+

基于BERT-CBG-BiLSTM-CRF的羊养殖命名实体识别

Sheep breeding named entity identification based on BERT-CBG-BiLSTM-CRF
下载PDF
导出
摘要 羊养殖知识多以文本的形式记录存储,知识量大、碎片化程度严重。为了改善构建羊养殖知识图谱时命名实体识别效果不佳的问题,本文的羊养殖文本命名实体识别模型将双向门控循环单元与卷积神经网络相结合,模型通过BERT预处理进行文本向量化处理,处理结果在CBG层通过训练字词向量,得到初步提取的上下文语义和词语语义,连接双向长短期记忆网络;条件随机场最终得到最大概率的输出序列。实验对特征、产地、建设、经济价值、品种、产区环境6类实体进行识别,最高F1值为95.86%。 Sheep breeding knowledge is mostly recorded and stored in the form of texts,which has the characteristics of large amount of knowledge and serious degree of fragmentation.In order to improve the problem of poor recognition of named entities when constructing sheep breeding knowledge graphs,the named entity recognition model of sheep breeding text in this paper is an optimization model that combines two-way gated circular units with convolutional neural networks.The model performs text vectorization processing through BERT preprocessing,and the processing results are trained in the CBG layer to obtain the contextual semantics and word semantics of the initial extraction,and then connect the two-way long-term short-term memory network;the conditional output sequence with the airport finally obtains the maximum probability.In this paper,six types of entities were identified experimentally for characteristics,origin,construction,economic value,varieties,and production area environment,and the highest F1 value was 95.86%.
作者 王凯 李仁港 王天一 WANG Kai;LI Rengang;WANG Tianyi(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2023年第5期140-144,150,共6页 Intelligent Computer and Applications
基金 贵州省科学技术基金(ZK[2021]304) 贵州省科技支撑计划([2021]176)。
关键词 羊养殖 命名实体识别 BERT 神经网络 sheep farming named entity recognition BERT neural networks
  • 相关文献

参考文献6

二级参考文献45

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2孙茂松,黄昌宁,高海燕,方捷.中文姓名的自动辨识[J].中文信息学报,1995,9(2):16-27. 被引量:87
  • 3罗智勇 宋柔.现代汉语自动分词中专名的一体化、快速识别方法[A]..ICCC,Singapore[C].,2001.11..
  • 4季姮,罗振声.基于反比概率模型和规则的中文姓名自动辨识系统[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001.123-128.
  • 5何燕.基于单字词转移概率的未登录词识别[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001 141-146.
  • 6张艳丽,黄德根等.统计和规则相结合的中文机构名称识别[A].自然语言理解与机器翻译[C].北京:清华大学出版社,2001.233-239.
  • 7SUN J,GAO J F,ZHANG L,et al.Chinese named entity identification using class-based language model[A].Proc of the 19th International Conference on Computational Linguistics[C].Taipei:Morgan Kauffmann Press,2002.967-973.
  • 8YU H,ZHANG H,LIU Q.Recognition of Chinese organization name based on role tagging[A].Advances in Computation of Oriental Languages[C].Beijing:Tsinghua University Press,2003.79-87
  • 9ZHANG H,LIU Q,YU H,et al.Chinese named entity recognition using role model[J].The International Journal of Computational Linguistics and Chinese Language Processing,2003,8(2):1-31.
  • 10RICHARD S,THOMAS E.The first international Chinese word segmentation bakeoff[A].Second SIGHAN Workshop on Chinese Language Processing[C].Sapporo:Sapporo Press,2003.133-143.

共引文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部