摘要
高压压气机后面级的叶片吸力面三维角区内易堆积大量的低能流体。为了指导吸气槽设计,达到量化分析叶栅吸力面吸气槽位置与角区分离的关联性的目的,以一高负荷压气机叶栅为研究对象,采用计算流体力学仿真软件讨论了全叶高吸气槽轴向位置变化对叶栅性能的影响,并以角区分离起始位置到叶栅前缘之间的距离(ZCS)作为量化标准。研究表明:在设计工况附近,总压损失随着吸气槽轴向位置从前向后移动表现出了先减小后增大的趋势,且叶片吸力面吸气槽在不同工况下存在最佳轴向位置。在0°迎角时,当吸气槽距离分离点间的轴向距离为0.33倍的ZCS时为最佳,可使总压损失系数降低10.9%。这种量化结果借助角区分离结构实现了吸气槽轴向位置设计的标准化指导。
A vast bulk of low-energy fluid is easy to accumulate in the three-dimensional corner range of the rear stage in a high-pressure compressor.To quantitatively analyze the correlation between suction slot position and corner separation,this paper,taking a high-load compressor cascade as the research object,discusses the influence of the axial position changes in the full-span suction slot on the cascade performance by the computational fluid dynamics(CFD)simulation software to guide suction slot design.As a result,it proposes the distance(ZCS)between the starting position of the corner separation and the leading edge of the cascade as the quantitative standard.It is found that the total pressure loss decreases first and then increases as the axial position of the suction slot moves upstream around the design working conditions,and there is an optimal axial position of the suction slot on the blade suction surface in different conditions.At the angle of incidence of 0°,the optimal performance can be achieved when the axial distance between suction slot and separation point is 0.33 times as much as ZCS,and the total pressure loss coefficient can be reduced by 10.9%.With the help of the corner separation structure,this quantitative result realizes the standardized guidance of the axial position design of the suction slot.
作者
李凤鸣
桂荔
钱宇
马姗
LI Fengming;GUI Li;QIAN Yu;MA Shan(Civil Aviation Flight University of China,Guanghan 618307,China)
出处
《现代防御技术》
北大核心
2023年第2期23-32,共10页
Modern Defence Technology
基金
国家自然科学基金民航联合基金重点项目(U2133209)
四川省科技厅青年基金项目(23NSFSC2925)
中国民用航空飞行学院青年基金项目(Q2015-007)。
关键词
压气机叶栅
附面层抽吸
总压损失
角区分离
低能流体
流动控制
compressor cascade
boundary layer suction
total pressure loss
corner separation
low-energy fluid
flow control