摘要
以矩阵的秩的计算、(不)等式的证明为出发点,对常用的矩阵的秩的定义和性质进行归纳总结,并给出矩阵的秩的(不)等式的七种证明方法。通过具体例子得出结论:在证明矩阵的秩的(不)等式时,若能巧妙利用矩阵、线性方程组、线性空间、线性变换等的理论和技巧,常常能起到事半功倍的效果。
Based on the calculation of matrix rank and the proof of matrix rank(in)equalities,this paper summarizes the definition and properties of commonly used matrix rank,and gives seven proof methods of matrix rank(in)equalities.Through concrete examples,it is concluded that if we can skillfully use the theories and skills of matrix,linear equations,linear space and linear transformation,we can often get twice the result with half the effort.
作者
闫金亮
郑思慧
YAN Jinliang;ZHENG Sihui(School of Mathematics and Computer,Wuyishan,Fujian 354300)
出处
《武夷学院学报》
2023年第3期28-33,共6页
Journal of Wuyi University
基金
武夷学院师生共创科研团队项目“浅水波方程保能量算法的构造及应用”(2020-SSTD-003)。
关键词
矩阵的秩
不等式
分块矩阵
初等变换
线性空间
线性变换
rank of matrix
inequality
block matrix
elementary transformation
linear space
linear transformation