期刊文献+

学生行为数据与学业成绩的关系研究——基于离群点检测算法 被引量:1

A correlational study on the student behavior data and academic performance
原文传递
导出
摘要 以S高校的校园一卡通数据为基础,通过对数据进行预处理并构建预测指标体系,使用基于聚类的离群点检测算法从多个角度对学生校园行为数据进行挖掘,并对学生行为与学业成绩的相关性进行分析.结果表明,每天用餐是否规律、进入图书馆的次数、借阅图书的次数、吃早饭次数之和与学业成绩具有强相关性.基于决策树算法构建了学业成绩预测模型,实现了对学生学业成绩预警.建议教学部门或教育管理者除了关注学生上课情况和学科成绩外,还应积极引导学生养成健康、规律、热爱阅读的生活方式. Based on the campus one-card data of S university,a prediction index system is constructed by preprocessing the data.A clustering-based outlier detection algorithm is used to mine student campus behavior data from multiple perspectives,and the correlation between student behavior and academic performance is analyzed.Results indicate that there is a strong correlation among regularity of daily meals,number of times one visits library,number of times one borrows books,sum of times one eats breakfast,and academic performances.An academic performance prediction model is hence constructed for early warning of academic performance.Teachers or educational managers should not only pay attention to students'class and academic performance,but also actively guide students to develop health and love of reading.
作者 王洪亮 赵圆圆 WANG Hong-liang;ZHAO Yuan-yuan(Department of Information Engineering,Shijiazhuang University of Applied Technology,Shijiazhuang,Hebei 050081,China)
出处 《石家庄职业技术学院学报》 2023年第2期35-40,共6页 Journal of Shijiazhuang College of Applied Technology
基金 河北省教育科学研究“十四五”规划课题(2102002)。
关键词 离群点检测算法 学生行为数据 学业成绩 预测 outlier detection algorithm student behavior data academic performance forecast
  • 相关文献

参考文献2

二级参考文献76

  • 1文俊浩,吴中福,吴红艳.空间孤立点检测[J].计算机科学,2006,33(5):186-187. 被引量:5
  • 2杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 3汪加才,张金城,江效尧.一种有效的可视化孤立点发现与预测新途径[J].计算机科学,2007,34(6):200-203. 被引量:5
  • 4薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 5赵科平,周水庚,关佶红,等.一种新的离群数据对象发现方法∥中国人工智能学会第10届全国学术年会论文集.北京:北京邮电大学出版社,2003.
  • 6Aggarwal C C, Yu P. Outlier detection for high dimensional dataft Proc. of the ACM SIGMOD International Conference on Management of Data. Santa Barbara, 2001:37-47
  • 7Angiulli F, Pizzuti C. Outlier Mining in Large High Dimensional Data Sets. IEEE Trans. Knowledge and Data Eng. , 2005, 2 (17) :203-215
  • 8Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outlier. IEEE Trans. Knowledge and Data Eng. , 2006, 2(18): 145-160
  • 9Aggarwal C C. Re - designing Distance Functions and Distance - based Applications for High Dimensional Data. SIGMOD Record Date, 2001, 30(1):13-18
  • 10Yu Dantong, Gholamhosein S, Zhang Aidong. FindOut: Finding Outliers in Very Large Datasets. Knowledge and Information Systems, 2002,4 (4) : 387-412

共引文献153

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部