期刊文献+

基于核心用户和协同过滤的多样性推荐方法

Diversity Recommendation Method Based on Core Users and Collaborative Filtering
下载PDF
导出
摘要 基于协同过滤算法的推荐系统对某一目标用户产生推荐结果时,存在追求高准确度而牺牲多样性的问题。为了改善并解决这一问题,提出在协同过滤的基础上融入核心用户的多样性推荐算法。首先,在推荐系统的所有用户数据中根据用户评价的项目数量以及评价的准确度筛选出核心用户;然后,依次计算待推荐项目的特定用户与各个核心用户两两之间的相似性,目标用户的k最近邻即根据相似性的大小排序排在前k个位置的用户;最后,将从基于核心用户得到的k个最近邻与基于用户的协同过滤推荐技术得到的前k个最近邻进行权重调整结合得到最终的推荐列表。实验结果显示,本方法在保证一定程度推荐准确性的情况下,可以有效增大系统的推荐多样性以及用户的满意度。 When a recommendation system based on collaborative filtering algorithm produces a recommendation result for a certain target user,it has the problem of seeking high accuracy at the expense of diversity.In order to solve this problem,this paper proposes a diversity recommendation algorithm based on collaborative filtering and incorporating core users.Firstly,the core users are screened out from all user data of the recommendation system according to the number of items evaluated by users and the accuracy of evaluation.Then,the similarity between the specific users and core users of the recommended project is calculated in sequence.The K-nearest neighbor of the target user is the user in the top K positions ranked according to the size of the similarity.Finally,the final recommendation list is obtained by adjusting the weights of the K nearest neighbors obtained based on the core users and the top K nearest neighbors obtained by the user-based collaborative filtering recommendation technology.Experimental results show that this method can effectively increase the diversity of recommendations and user satisfaction of the system while ensuring a certain degree of recommendation accuracy.
作者 龙苏婷 李昕 LONG Su-ting;LI Xin(School of Electronics&Information Engineering,Liaoning University of Technology,Jinzhou 121001,China)
出处 《辽宁工业大学学报(自然科学版)》 2023年第2期99-107,共9页 Journal of Liaoning University of Technology(Natural Science Edition)
关键词 多样性 核心用户 相似性 协同过滤推荐 准确性 diversity core users similarity collaborative filtering recommendation accuracy
  • 相关文献

参考文献8

二级参考文献60

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 4Sarwar B, Karypis G, Konstan J, etal. Item based collaborative filtering recommendation algorithms. Proceedings of the 10^th International Conference on World Wide Web, 2001, 285-295.
  • 5Takacs G, Pilaszy I, Nementh, et al. Scalable collaborative filtering approaches for large rec ommender system. Journal of Machine Learning Research, 2009(10):623-656.
  • 6Linden G, Smith B, York J. Amazon. com recommendations: Item-to item collaborative filtering. IEEE Internet Computing, 2003, 7 (1): 76-80.
  • 7Das A, Datar M, Garg A. Google news personalization: Scalable online collaborative filtering. Proceeding of the WWW 2007/Track: Industrial Practice and Experience. Banff, Alberta, Canada, 2007, 271-280.
  • 8Park S, Pennock D. Applying collaborative filtering techniques to movie search for better ranking and browsing. Proceedings of the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data. San Jose, California, USA, 2007, 550-559.
  • 9Bell R, Koren Y. Improved neighborhood based collaborative filtering. KDD-Cup and Workshop at the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data International Conference on Knowledge Discovery and Data Mining, 2007, 7-14.
  • 10Deshpande M, Karypis G. Item-based top N recommendation algorithms. Association for Cmputing Machinery Transactions on Information Systems(TOIS), 2004,22(1) :143-177.

共引文献414

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部