期刊文献+

k近邻空间插值算法优化研究

An Algorithmic Optimization Study of k-nearest Neighbor Space Interpolation
下载PDF
导出
摘要 在k近邻空间插值中,如果能减少近邻点的搜索次数,可进一步提高空间插值的性能。引入k近邻距离阈值的概念和计算方法,并以该阈值为基础,发展了k+M优化算法。其算法核心是在空间插值过程中,获取初始栅格的k+M近邻点集,计算k+M近邻距离阈值。若从初始栅格向右移动至其他栅格的距离小于该阈值,则直接利用初始栅格的近邻点集进行空间插值。实验证明,该算法相对于每个栅格均搜索近邻点的算法,性能有明显的提升。 For the k-nearest-neighbor spatial interpolation algorithm,the performance of spatial interpolation can be further improved if the number of searches for nearest-neighbor points can be reduced.In this paper,the concept and calculation method of the k-nearest neighbor distance threshold is proposed first,and based on it the k+M optimization algorithm is developed.The key part of the k+M optimization algorithm is obtaining the k+M nearest neighbor points of the initial grid in the process of spatial interpolation,and calculating the k+M nearest neighbor distance threshold.If the moving distance of the initial grid is less than the set threshold,the spatial interpolation can be performed directly using the nearest neighbor points of the initial grid.Experimentally,compared with the algorithm of searching the nearest neighbor points for each raster,the performance of the algorithm used in this paper is significantly improved and its research results have certain theoretical significance and practical value.
作者 陈超英 陈宫燕 李彦军 穷达 索朗卓嘎 CHEN Chaoyin;CHEN Gongyan;LI Yanjun;QIONG Da;SUO LANG Zhuoga(Linzhi City Meteorological Bureau,Linzhi 860000)
机构地区 西藏林芝气象局
出处 《成都信息工程大学学报》 2023年第2期148-153,共6页 Journal of Chengdu University of Information Technology
基金 西藏自治区自然科学基金资助项目(XZ202101ZR0042G)。
关键词 k近邻点集 空间插值 优化算法 k-nearest neighbor points spatial interpolation optimization algorithm
  • 相关文献

参考文献6

二级参考文献47

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2王涛,刘纪平,毋河海.基于排序预处理的等高线提取算法[J].测绘学报,2006,35(4):390-394. 被引量:7
  • 3罗英伟 等.GIS的构件设计[J].中国图形图象学报,1999,(4):79-84.
  • 4[1]Guttman A. R-trees: a dynamic index structure for spatial searching [A]. ACM SIGMOD [C]. Waterloo, Ontario, Canada: [s.n.], 1984, 13(2): 47~57.
  • 5[2]Samet H. The design and analysis of spatial data structures [M]. Reading, MA: Addison-Wesley, 1990. 130~153.
  • 6[3]Friedman J H, Bentley J L, Finkel R A. An algorithm for finding the best matches in logarithmic expected time [J]. ACM Trans Math Software, 1977, 3(3): 209~226.
  • 7[4]Sproull R F. Refinements to nearest neighbor searching in k-dimensional trees [J]. Algorithmic, 1991, 15(6):579~599.
  • 8[5]Rousspoulos N, Kelly S, Vincent F. Nearest neighbor queries [A]. In Proceedings of the ACM SIGMOD International Conference on the Management of Data [C]. San Jose, CA, USA: [s.n.], 1995, 24(2): 71~79.
  • 9[6]Hjaltason G R, Samet H. Distance browsing in spatial databases [J]. ACM Transaction on Database Systems, 1999, 24(2):265~318.
  • 10Korn K,Muthukrishnan S,Karciauskas G,Saltenis S.Influence sets based on reverse nearest neighbor queries.In:Naughton JF,Bernstein PA,eds.Proc.of the 2000 ACM SIGMOD Int'l Conf.on Management of Data.ACM Press,2000.201-212.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部