期刊文献+

Erosion and covered zones altered by surface coverage effects on soil nitrogen and carbon loss from an agricultural slope under laboratorysimulated rainfall events 被引量:4

原文传递
导出
摘要 Soil erosion,one of the most serious environmental concerns,might remove topsoil and essential element from terrestrial land.However,few attentions have been given to investigating how soil erosion regimes affect soil carbon and nitrogen loss.Therefore,this study investigated the effects of surface coverage rates(83%,67%,50%,33%,17%and 0%)and two positions(up-and downslope)on erosion regimes and its associated soil nitrogen and carbon loss under a sequence of six rainfalls(R1-R6).These results showed that the sediment concentrations with 33%(R4)and 17%(R5)coverage downslope were significantly lower than those with coverage upslope,whereas there was no significant difference between the runoff rates of the two slopes.Thus,surface coverage at different positions induced two soil erosion regimes(deposition-and transport-dominated processes).Dynamics of the DON and DIN concentrations indicated different release processes of soil nitrogen into runoff.The DON contributed to a substantial amount of soil nitrogen loss,which accounted approximately 81%of the organic form.The SBOC is significantly correlated with sediment-enriched clay particles from the deposition-dominated processes and is higher than that from the transport-dominated processes.The DOC is significantly correlated with Rr for transport-dominated processes.These results illustrated the critical role of erosion regimes in soil organic carbon loss in dissolved or sediment-bound form.It is concluded that erosion/covered zones altered by surface coverage could produce transport-and deposition-dominated erosion regimes and consequently affect soil carbon and nitrogen loss.In addition,these results demonstrated that surface coverage pattern may efficiently control soil erosion and soil carbon and nitrogen loss.
出处 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第3期382-392,共11页 国际水土保持研究(英文)
基金 This work was financially supported by the National Nature Science Foundation of China(41807176,41971134).
  • 相关文献

同被引文献99

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部