期刊文献+

Rainfall erosivity estimation over the Tibetan plateau based on high spatial-temporal resolution rainfall records 被引量:1

原文传递
导出
摘要 The Tibetan Plateau(TP)in China has been experiencing severe water erosion because of climate warming.The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP.In this study,1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity,and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified.The mean annual erosive rainfall was 295 mm,which accounted for 53%of the annual rainfall.An average of 14 erosive events occurred yearly per weather station,with the erosive events in the wet season being more likely to extend beyond midnight.In these cases,the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations,which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity.The mean annual rainfall erosivity in the TP was 528 MJ mm·ha^(-1)·h^(-1),with a broader range of 0–3402 MJ mm·ha^(-1)·h^(-1),indicating a significant spatial variability.Regions with the highest mean annual rainfall erosivity were located in the forest zones,followed by steppe and desert zones.Finally,the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation,but attention should be paid to the erosion process of snowmelt in the inner part of the TP.These results can be used as the reference data for soil erosion prediction in normal precipitation years.
出处 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第3期422-432,共11页 国际水土保持研究(英文)
基金 This research was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0307) the Strategic Priority Research Programof Chinese Academy of Sciences(Grant No.XDA20100300) the National Science Foundation for Young Scientists of China(Grant No.41905048) the Basic Research Special Project of the Chinese Academy of Meteorological Sciences(Grant No.2019Z008).
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部