摘要
Gallbladder carcinoma (GBC) is a malignant tumor of the bil-iary system that is aggressive, difficult to detect early, and has a low surgical resection rate and poor prognosis. Ap-propriate in vitro growth models are expected to focus on the study of the biological behavior and assess treatment effects. Nonetheless, cancer initiation, progression, and in-vasion include spatiotemporal changes and changes in the cell microenvironment intracellular communication, and in-tracellular molecules, making the development of in vitro growth models very challenging. Recent advances in bioma-terial methods and tissue engineering, particularly advances in bioprinting procedures, have paved the way for advances in the creative phase of in vitro cancer research. To date, an increasing number of cultured models of gallbladder disease have emerged, such as two-dimensional (2D) GBC growth cell cultures, three-dimensional (3D) GBC growth cell cul-tures, xenograft models, and 3D bioprinting methods. These models can serve as stronger platforms, focusing on tumor growth initiation, the association with the microenvironment, angiogenesis, motility, aggression, and infiltration. Bioprint-ed growth models can also be used for high-throughput drug screening and validation, as well as translational opportuni-ties for individual cancer therapy. This study focused on the exploration, progress, and significance of the development of GBC cultural models. We present our views on the short-comings of existing models, investigate new innovations, and plan future improvements and application possibilities for cancer models.
基金
the National Natural Science Foundation of China(81972698).