期刊文献+

Adaptive temporal patterns of echolocation and flight behaviors used to fly through varied-sized windows by 2 species of high duty cycle bats

原文传递
导出
摘要 As actively sensing animals guided by acoustic information, echolocating bats must adapt their vocal–motor behavior to various environmentsand behavioral tasks. Here, we investigated how the temporal patterns of echolocation and flight behavior were adjusted in 2 species of batswith a high duty cycle (HDC) call structure, Rhinolophus ferrumequinum and Hipposideros armiger, when they flew along a straight corridorand then passed through windows of 3 different sizes. We also tested whether divergence existed in the adaptations of the 2 species. Both H.armiger and R. ferrumequinum increased their call rates by shortening the pulse duration and inter-pulse interval for more rapid spatial samplingof the environment when flying through smaller windows. Bats produced more sonar sound groups (SSGs) while maintaining a stable proportion of calls that made up SSGs during approaches to smaller windows. The 2 species showed divergent adjustment in flight behavior across3 different window sizes. Hipposideros armiger reduced its flight speed to pass through smaller windows while R. ferrumequinum increasedits flight speed. Our results suggest that these 2 species of HDC bats adopt similar acoustic timing patterns for different tasks although theyperformed different flight behaviors.
出处 《Current Zoology》 SCIE CAS CSCD 2023年第1期32-40,共9页 动物学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.31770429 and 32071492) the National Defense Basic Scientific Research Project of China(Grant No.C019220023).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部