期刊文献+

Weighted Composition Operators from the Bloch Spaces to Weighted Hardy Spaces on Bounded Symmetric Domains

原文传递
导出
摘要 Let BE be a bounded symmetric domain realized as the unit open ball of JB^(*)-triples.The authors will characterize the bounded weighted composition operator from the Bloch space B(BE)to weighted Hardy space Hv∞in terms of Kobayashi distance.The authors also give a sufficient condition for the compactness,and also give the upper bound of its essential norm.As a corollary,they show that the boundedness and compactness are equivalent for composition operator fromB(BE)to H∞(BE),when is a finite dimension JB^(*)-triple.Finally,they show the boundedness and compactness of weighted composition operators from B(BE)to Hv,0∞(BE)are equivalent when is a finite dimension JB^(*)-triple.
作者 Lei LI Xiao WANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2023年第2期289-298,共10页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.12171251)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部