摘要
Let BE be a bounded symmetric domain realized as the unit open ball of JB^(*)-triples.The authors will characterize the bounded weighted composition operator from the Bloch space B(BE)to weighted Hardy space Hv∞in terms of Kobayashi distance.The authors also give a sufficient condition for the compactness,and also give the upper bound of its essential norm.As a corollary,they show that the boundedness and compactness are equivalent for composition operator fromB(BE)to H∞(BE),when is a finite dimension JB^(*)-triple.Finally,they show the boundedness and compactness of weighted composition operators from B(BE)to Hv,0∞(BE)are equivalent when is a finite dimension JB^(*)-triple.
基金
supported by the National Natural Science Foundation of China(No.12171251)。