期刊文献+

基于ResNet-18的磁瓦缺陷检测 被引量:1

Magnetic Tile Defect Detection Based on ResNet-18
下载PDF
导出
摘要 由于磁瓦在实际生产中会产生多种类型的缺陷,针对磁瓦生产的表面检测高质量要求,提出一种基于ResNet-18的磁瓦缺陷检测方法。首先通过构造磁瓦缺陷的不同类型数据集,再将数据集通过图像增强等方式扩充数据集进行预处理;引用ResNet-18作为训练所用的网络,设置好网络模型参数;最后通过网络训练完成对磁瓦缺陷的分类及标注。实验结果表明:扩充后数据集对比于原始数据集和其他方法,采用的方法中模型测试准确率更高,搭建的ResNet-18网络具有更好的鲁棒性和泛化性,证明了可以满足磁瓦缺陷检测中的可能性。 Due to the various types of defects in the actual production of magnetic tiles,a method of magnetic tile defect detection based on ResNet-18 was proposed to meet the requirements of high quality surface detection in the production of magnetic tiles.Firstly,different types of data sets of magnetic tile defects are constructed,and then the data sets are augmented by image enhancement and other methods for preprocessing.ResNet-18 was used as the training network,and the parameters of the network model were set.Finally,the classification and labeling of magnetic tile defects are completed by network training.The experimental results show that compared with the original data set and other methods,the model testing accuracy of the method adopted in this paper is higher,and the ResNet-18 network built has better robustness and generalization,which proves that it can meet the possibility of magnetic tile defect detection.
作者 周孟然 吴长志 ZHOU Mengran;WU Changzhi(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China;School of Artificial Intelligence,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2023年第2期136-139,143,共5页 Journal of Jiamusi University:Natural Science Edition
关键词 磁瓦 缺陷检测 图像增强 ResNet-18 magnetic tile defect detection image enhancement ResNet-18
  • 相关文献

参考文献9

二级参考文献39

  • 1陈磊,高宏伟,柴凤,程树康.小型无刷直流电动机振动与噪声的研究[J].中国电机工程学报,2006,26(24):148-152. 被引量:16
  • 2罗爱民,殷国富,魏万迎,殷鹰.基于Hausdorff距离区域生长的缺陷边缘重建方法[J].机械工程学报,2007,43(4):132-137. 被引量:5
  • 3Lades M, Vorbruggen J V, Buhmann J, et al. Distortion invariant object recongnition in the dynamic link architecture [J]. IEEE Transactions on Computers(S0018-9340), 1993, 42(3): 300-311.
  • 4Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters(S 1370-4621), 1999, 9(3): 293-300.
  • 5WANG Yuqiao, CHENG Guangxu, HU Haijtm, et al. A soft sensor for carbon content of spent catalyst in a continuous eforming plant using LSSVM-GA [C]// Control Conference (CCC), 2012 31st Chinese, Hefei, China, July 25-27, 2012: 7056-7060.
  • 6CHENG Guojian, GUO Ruihua, WU Wenhai. Petroleum Lithology Discrimination Based on PSO-LSSVM Classification Model [C]// Second International Conference on Computer Modeling and Simulation, Sanya, Hainan, Jan 22-24, 2010, 4: 365-368.
  • 7Samuel Xavier-de-Souza, Johan A K Suykens, Joos Vandewalle, et al. Coupled Simulated Annealing [J]. IEEE Transactions on Systems, Man, and Cybernetics-PartB, Cybernetics(S1083-4419), 2010, 40(2): 320-335.
  • 8Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research(S1076-9757), 2002, 16: 341-378.
  • 9Han H, Wang W Y, Mao B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning [M]. Advances in Intelligent Computing, Springer Berlin Heidelberg, 2005: 878-887.
  • 10郑晓曦,严俊龙.数学形态学在磁瓦表面缺陷检测中的运用[J].计算机工程与应用,2008,44(16):182-184. 被引量:7

共引文献136

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部