期刊文献+

Pareto鲸鱼算法对电机结构的多目标工程优化 被引量:2

Multi-objective engineering optimization of motor structure by Pareto Whale algorithm
下载PDF
导出
摘要 为了提高直线电机的推力性能,对电机结构尺寸优化与多目标优化算法进行关联研究,使用算法来优化电机次级侧的尺寸结构,从而提高电机的推力密度,降低推力波动。提出了一种求解多目标问题的Pareto鲸鱼优化算法,通过和另两种同类算法关于测试函数优化结果的对比实验表明Pareto WOA算法的先进性,然后采用Maxwell与MATLAB的联合方法辅助算法对直线同步磁阻电机的结构进行优化。结果证明,运用Pareto WOA算法对永磁同步直线电机进行结果优化后,电机的推力性能更加出色。 In order to improve the thrust performance of linear motor,the correlation study of motor structure size optimization and multi-objective optimization algorithm was carried out.The algorithm was used to optimize the size structure of the secondary side of the motor,so as to improve the thrust density of the motor and reduce the thrust fluctuation.This paper proposes a Pareto whale optimization algorithm for solving multi-objective problems.Through the comparison experiment with other two similar algorithms on the optimization results of test functions,the advanced performance of Pareto WOA algorithm was demonstrated.Then,Maxwell and MATLAB combined method assisted algorithm was used to optimize the structure of linear synchronous reluctance motor.The results show that the thrust performance of permanent magnet synchronous linear motor is better after the Pareto WOA algorithm is used to optimize the results.
作者 鲁志威 谢源源 LU Zhiwei;XIE Yuanyuan(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200090,China)
出处 《农业装备与车辆工程》 2023年第5期146-149,共4页 Agricultural Equipment & Vehicle Engineering
关键词 鲸鱼算法 多目标优化 测试函数 电机结构 whale algorithm multi-objective optimization test function motor structure
  • 相关文献

参考文献4

二级参考文献27

  • 1王充权.电机的计算机辅助设计与优化技术[M].上海交通大学出版社,1989..
  • 2Pareto V.Cours D'Economic Politique,volume I and Ⅱ [M].F Rouge,Lausamme, 1896.
  • 3E Zitzler.Evolutionary algorithms for multiobjective optimization: methods and applications[D].Ph D thesis.Swiss Federal Institute of Technology,Zurich, 1999.
  • 4J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks, 1995.
  • 5R C Eberhart,Y Shi.Partiele swarm opt mization:developments,applications and resources[C].In:Proc,Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001:81-86.
  • 6C A Coello Coello,M S Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization[C]JrrIEEE Congress on Evolutionary Computation (CEC 2002 ), Honolulu, Hawaii, USA, 2002:1051 - 1056.
  • 7C A Coello Coello,G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004;8(3) :256-279.
  • 8K E Parsopoulos,M N Varhatis. Particle swarm optimization method in multiobjective problems[C].In : Proc, ACM Symp on Applied Computing,Madrid, Spain, 2002:603-607.
  • 9X Hu,R C Eberhart.Muhiobjective using dynamic neighborhood particle swarm optimization[C].In:Proc,Congress Evolutionary Compution, Honolulu,Hawaii, USA, 2002:1677-1681.
  • 10X Hu,R C Eberhart,Y Shi.Particle swarm with extended memory for multiobjective particle swarm optimization[C].In : Proc IEEE Swarm Intelligence Symp, Indianapolies, IN, USA, 2003:193-197.

共引文献77

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部