期刊文献+

NiCo_(2)O_(4)/BiOCl/Bi_(24)O_(31)Br_(10) ternary Z-scheme heterojunction enhance peroxymonosulfate activation under visible light: Catalyst synthesis and reaction mechanism 被引量:2

原文传递
导出
摘要 The Z-scheme heterostructure for photocatalyst can effectively prolong the lifetime of photogenerated carriers and retain a higher conduction/valence band position,promoting the synergistic coupling of photocatalysis and peroxymonosulfate(PMS) activation.In order to fully utilize the luminous energy and realize the efficient activation of PMS,this work achieved successful construction of NiCo_(2)O_(4)/BiOCl/Bi_(24)O_(31)Br_(10) ternary Z-scheme heterojunction by simultaneously synthesizing BiOCl and NiCo_(2)O_(4) with NiCl_(2) and CoCl_(2) as the precursors.The intercalated BiOCl could serve as a carrier migration ladder to further achieve the spatial separation of electron-hole pairs,so that the oxidation and reduction processes separately occurred in different regions.Compared with the reported catalysts,the as-prepared composites exhibited the enhanced removal efficiency for tetracycline hydrochloride(TCH) in the visible light/PMS system,with a degradation efficiency of 85.30%in 2 min,and possessed good stability.Z-scheme heterojunction was shown to be beneficial for maximizing the superiority of photo-assisted Fenton-like reaction system.The experimental and characterization results confirmed that both non-radicals(^(1)O_(2)) and radicals(SO_(5)^(·-) and SO_(4)^(·-)) were involved in the reaction process and the SO_(5)^(·-)generated by the oxidation of PMS played a crucial role in the TCH degradation.The possible reaction mechanism was finally proposed.This study provided new insight into the Z-scheme heterostructure to promote the photo-assisted Fenton-like reaction.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期186-190,共5页 中国化学快报(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.52170079 and U20A20322) the Programme of Introducing Talents of Discipline to Universities,China(No.B16020)。
  • 相关文献

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部