摘要
The similarity of local structure-connection pattern and volumetrically compressive strain between host and guest phases can be used to stabilize heteroid metastable matter and tune the local structure and properties.Here a series of metastable ABO_(3)(A=Mn;B=Mn_(0.5)Mo_(0.5),Mn_(1/3)Ta_(2/3),and Mn_(0.5)Ta_(0.5)) were trapped in LiTaO_(3) to form solid-solutions,where the difference of solid solubility limit reveals the barrier of size effect on chemical pressure.All samples show antiferromagnetic characters,in which the(LiTaO_(3))_(1-x)-[Mn(Mn_(0.5)Mo_(0.5))O_(3)]_(x) series exhibit more complex magnetic and dielectric behaviors with the increasing of metastable guest phase,stemming from the complex interactive mechanism between Mn^(2+)and Mo^(6+).The cell parameter variation of (LiTaO_(3))_(1-z)-[Mn(Mn_(0.5)Ta_(0.5))O_(3)]_zshows a more regularly changing tendency,on account of the smallest size barrier.These findings show that chemical pressure can effectively stimulate the physical pressure to intercept and modulate a metastable phase at atomic-scale by compressibility effect between like structures at ambient pressure.
基金
financially supported by the National Natural Science Foundation of China(NSFC,Nos.21875287,22090041,22105228 and 11804404)
the China Postdoctoral Science Foundation(No.2021M693603)。