摘要
Surface charge transfer doping of graphene plays an important role in graphene-based electronics due to its simplicity,high doping efficiency,and easy-controllability.Here,we demonstrate the effective surface charge transfer hole doping of graphene by using a strong p-type molecular dopant hexacyanotrimethylene-cyclopropane (CN6-CP).The CN6-CP exhibits a very high intrinsic work function of 6.37 e V,which facilitates remarkable electron transfer from graphene to CN6-CP as revealed by in situ photoelectron spectroscopy investigations.Consequently,hole accumulation appears in the graphene layer at the direct contact with CN6-CP.As evidenced by Hall effect measurements,the areal hole density of graphene significantly increased from 8.3×10^(12)cm^(-2) to 2.21×10^(13)cm^(-2) upon 6 nm CN6-CP evaporation.The CN6-CP acceptor with strong p-doping effect has great implications for both graphene-based and organic electronics.
基金
financially supported by the National Key Research and Development Program of China(No.2017YFA0204700)
the National Natural Science Foundation of China(Nos.21805285,22175186 and 21803008)。