期刊文献+

基于深度神经网络和迁移学习的高精度车辆识别系统研究 被引量:1

Research on high precision vehicle recognition system based on deep neural network and transfer learning
下载PDF
导出
摘要 近年来,我国大力推进智慧城市和智慧交通建设,在车牌识别领域所要求的识别精度、场景适用性和反映灵敏性也越来越高。文章提出了一种基于深度神经网络算法的高精度车辆识别系统,利用开源图形化视觉处理库OpenCV和数据分析处理库NumPy对车牌进行图像预处理。基于预处理后的数据,利用深度神经网络学习框架TensorFlow进行学习训练,实现了对车牌的快速精准识别。系统首先对车牌所在位置进行定位,其次对锁定后的车牌图像进行切割,再次将车牌背景和文字通过像素点移位算法由彩色图像转换为灰度图像,最后实现字符的切割与识别,得到所要识别的车牌数据。实验结果表明,与传统识别系统相比,基于深度学习的识别系统准确率更高,识别速度更快。 In recent years,China has vigorously promoted the construction of smart cities and smart transportation,and the recognition accuracy,scene applicability,and reflection sensitivity required in the field of license plate recognition are also increasing.The article proposes a high-precision vehicle recognition system based on deep neural network algorithm,which utilizes the open-source graphical visual processing library OpenCV and data analysis processing library NumPy to preprocess the image of the license plate.Based on the preprocessed data,a deep neural network learning framework TensorFlow was used for learning and training,achieving fast and accurate recognition of license plates.This system first locates the location of the license plate,then cuts the locked license plate image.Then,the license plate background and text are converted from a color image to a grayscale image through a pixel shift algorithm.Finally,character cutting and recognition are achieved to obtain the license plate data to be recognized.The experimental results show that compared with traditional recognition systems,deep learning based recognition systems have higher accuracy and faster recognition speed.
作者 吕兴琴 郭晓瑜 蔡小丹 Lyu Xingqin;Guo Xiaoyu;Cai Xiaodan(Jiangsu Hai’an Secondary Professional School,Nantong 226600,China)
出处 《无线互联科技》 2023年第5期34-38,共5页 Wireless Internet Technology
基金 2020年南通市科技计划项目,项目名称:智慧交通网络下复杂场景的新国标电动车车牌识别系统研究与应用,项目编号:JCZ20144。
关键词 智慧交通 车辆识别 深度神经网络 smart transportation vehicle identification deep neural network
  • 相关文献

参考文献7

二级参考文献51

  • 1林国余,张为公.基于进化规划的最大类间方差的图像分割算法[J].传感技术学报,2006,19(1):179-182. 被引量:11
  • 2马英辉,韩焱.彩色图像分割方法综述[J].科技情报开发与经济,2006,16(4):158-159. 被引量:7
  • 3Chen T, Metaxas D. A hybrid framework for 3D medical image segmentation[J]. Medical Image Analysis, 2005, 9(6): 547-565.
  • 4Chen G, Tian G. A hybrid boundary detection algorithm based on watershed and snake[J]. Pattern Recognition Letters, 2005, 26 (9): 1256-1265.
  • 5Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641-647.
  • 6Li W, Huang H, Zhang D. A Color Image Segmentation Method Based on Automatic Seeded Region Growing[C]//Proceedings of the IEEE International Conference on Automation and Logistics, 2007: 1925-1929.
  • 7Munoz X, Freixenet J. Strategies for image segmentation combining region and boundary Information [J]. Pattern Recognition Letters, 2003, 24: 375-392.
  • 8Pavlidis T, Liow Y T. Integrating region growing and edge detection[J]. IEEE Tranks Pattern Analysis Machine Intelligence, 1990, 12(3): 225- 233.
  • 9苏恒阳,袁先珍.一种改进的Canny的图像边缘检测算法[J].计算机仿真,2010,27(10):242-245. 被引量:25
  • 10冯宇,李文举,孙娟红,赵颖,单家伟.基于小波变换和分形维数的车牌汉字识别[J].计算机工程,2011,37(22):137-138. 被引量:4

共引文献131

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部