期刊文献+

基于改进人工蜂群算法的灾害场景下路径规划 被引量:3

Path planning in disaster scenarios based on improved artificial bee colony algorithm
下载PDF
导出
摘要 针对人工蜂群算法在以往研究中表现出探索局限性以及开发低效性等缺点,提出一种自适应收敛下的改进人工蜂群算法。该算法通过全域采样随机初始化保证初始解集完整性;选择概率计算中加入开采次数因子提升潜在较优解选中概率;结合余弦函数变化特点,对选中的个体进行全局最优个体引导下的自适应局部开发,提升局部开发精度。最后,通过不同灾害场景下与多个算法进行对比,结果表明改进后的算法具备更高的求解精度,更好的全局收敛性,能高效解决复杂灾害场景下的路径规划问题。 Aiming at the shortcomings of artificial bee colony algorithm in previous studies,such as exploration limitations and development inefficiency,an improved artificial bee colony algorithm with adaptive convergence is proposed.The algorithm uses global sampling and random initialization to ensure the integrity of the initial solution set.The mining times factor is added to the selection probability calculation to increase the probability of potential solutions.Combining the characteristics of the cosine function change,the selected individuals are subjected to adaptive partial development under the guidance of the global optimal individual to improve the accuracy of local development.Finally,through comparison with multiple algorithms in different disaster scenarios,the results show that the improved algorithm has higher solution accuracy,better global convergence,and can efficiently solve path planning problems in complex disaster scenarios.
作者 朱金磊 袁晓兵 裴俊 ZHU Jinlei;YUAN Xiaobing;PEI Jun(Science and Technology on Microsystem Laboratory,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2023年第3期397-405,共9页 Journal of University of Chinese Academy of Sciences
基金 国家重点研发计划(2020YFC1511602)资助。
关键词 人工蜂群算法 全域采样 潜在较优解 路径规划 灾害场景 全局收敛性 artificial bee colony algorithm global sampling potential solution path planning disaster scenario global convergence
  • 相关文献

参考文献3

二级参考文献28

  • 1冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,41(12):74-75. 被引量:31
  • 2TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 3GATES B. A robot in every home[J~. Scientific American, 2008,18(1) :4-11.
  • 4NICOSEVICI T,GARCIA R. Automatic visual bag of words for online robot navigation and mapping [ J 1. IEEE Transaction on Robotics,2012,28(4):886-898.
  • 5HONG Quan, KE Xinga, ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing, 2013,120(23) : 509-517.
  • 6WANG Zhangqi, ZHU Xiaoguang, HAN Qingyao. Mobile robot path planning based on parameter optimization ant colony algorithm [ J ]. Procedia Engineering, 2011, 15 ( 4 ) : 2738-2741.
  • 7KALA R. Multi robot path planning using co-evolutionary genetic programming[J]. Expert Systems with Applications, 2012,39(3) :3817 3831.
  • 8HSIEH H T. CHU C H. Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms I- J ]. Robotics and Computer-Integrated Manufacturing,2012,29(6) :3-11.
  • 9KARABOGA D. An idea based on honey bee swarm for numerical optimization I- R ]. T/Jrkiye: Erciyes University, 2005.
  • 10GAO Weifeng,LIU Sanyang. A modified artificial bee colony algorithm[JT. Computers and Operations Research, 2012,39 (3) :687-697.

共引文献162

同被引文献26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部