期刊文献+

Kernel-Based State-Space Kriging for Predictive Control 被引量:1

下载PDF
导出
摘要 In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1263-1275,共13页 自动化学报(英文版)
基金 supported by the Agencia Estatal de Investigación (AEI)-Spain (PID2019-106212RB-C41/AEI/10.13039/501100011033) Junta de Andalucía and FEDER funds (P20_00546)。
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部