期刊文献+

一类具有疫苗接种的双菌株流感模型的动力学分析 被引量:1

Dynamic analysis of a two-strain influenza model with vaccination
下载PDF
导出
摘要 依据甲型H1N1流感的传播机理,构建了一类SVEI SI RR的传染病模型.计算了控制再生数R c,证明了无病平衡点的全局稳定性和地方病平衡点的存在性,进而对模型的主要参数进行了敏感性分析,最后进行了数值模拟.结果表明:感染规模随着潜伏期感染者自愈率1-p的增大而减少;耐药性菌株的感染人数随着治疗率f的提高而逐渐增大;累计感染人数随着疫苗接种率η的增大而逐渐减小,并且相比于未接种疫苗的情况,当疫苗接种率达到0.3时,累计感染人数降低约0.47倍.因此,科学合理地进行药物治疗,加大疫苗接种的覆盖率对控制甲型H1N1流感的传播有着非常重要的作用. Based on the transmission mechanism of influenza A(H1N1),an SVEI SI RR infectious disease model is established.Firstly,the control reproduction number R c of the model is calculated.Secondly,both the global stability of the disease-free equilibrium and the existence of the unique endemic equilibrium are proved.Furthermore,the sensitivity analysis of the main parameters are carried out.Finally,the numerical simulations are conducted.The results show that the scale of infection decreased with the increase of the self-healing rate 1-p of the infected persons during the incubation period;the number of infections of drug-resistant strains increases gradually with the increase of the treatment rate f;the cumulative number of infections reduced with the increase of the vaccination rateη.Besides,compared with non-vaccination,when the vaccination rate reached 0.3,the cumulative number of infected people decreased by about 0.47 times.Therefore,scientific and rational drug treatment and extending vaccination coverage played an important role in controlling the spread of influenza A(H1N1).
作者 王晓静 梁宇 郭松柏 陈靖宜 李佳慧 郭德玉 Wang Xiaojing;Liang Yu;Guo Songbai;Chen Jingyi;Li Jiahui;Guo Deyu(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期48-55,共8页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11901027) 北京市教育委员会科研计划项目(SZ202110016008) 北京市教育委员会科技发展计划项目(KM201910016001) 北京建筑大学研究生创新项目(PG2022142,PG2023145).
关键词 甲型H1N1流感 耐药性菌株 敏感性菌株 疫苗接种 敏感性分析 稳定性 influenza A(H1N1) drug-resistant strains sensitive strains vaccination sensitivity analysis stability
  • 相关文献

参考文献4

二级参考文献25

  • 1靳立强,宋传学,彭彦宏.基于回正性与轻便性的前轮定位参数优化设计[J].农业机械学报,2006,37(11):20-23. 被引量:30
  • 2He Jiankui He, Luwen Ning, Yin Tong, Origins and evolutionary genomics of the novel avian?origin H7N9 influenza A virus in China: Early findings[J/OL]. Veterinary Research, 2013(42): 1-10. http://d.g.wanfangdata.com.cn/ OAPaper _oaLdoaj-articles_cd8329d594d770fdde888bf187 4edd7 c. aspx.
  • 3http://www.jkb.com.cn/htmlpage/36/364976.htm?docid=364976&cat=09E&sKeyWord=null.
  • 4Alexander M E, Bowman C S, Moghadas S M, Summers R, Gumel A B, Sahai B M. A vaccination model for transmission dynamic of influenza[J]. SIAM J Appl Dyn Syst, 2004(3): 503-524.
  • 5Alexander M E, Bowman C S, Feng Z, Gardam M, Moghadas S M, Rost G, Wu J, Yan P. Eergence of drug resistance: implications for antiviral control of pandemic influenza[J]. Proc R Soc B, 2007(274): 1675-1684.
  • 6Alexander M E, Moghadas S M, Rost, G J. A delay differential model for pandemic influenza with antiviral treatment[J]. Bull Math BioI, 2008(70): 372-397.
  • 7Lipsich M, Cohen T, Muray M, Levin B R. Antiviral resistance and the control of pandemic influenza[J]. PLoS Med, 2007(4): 0111-0120.
  • 8McC aw J M, McVernon J. Prophylaxis or treatment Optimal use of an antiviral stockpile during an influenza pandemic[J]. Math Biosci, 2007(209): 336-360.
  • 9Zhipeng Qiu, Zhilan Feng. Transmission dynamics of an influenza model with vaccination and antiviral treatment[J]. Society for Mathematical Biology, 2010(72): 1-33.
  • 10Catillo-Chavez C, Thieme H R. Asymptotically autonomous epidemical models[C]/ /Mathematical Population Dynamics: Analysis of Heterogeneity, Arino 0, Kimmel M. (Eds). Theory of Epidemics Wuetz, 1995(1): 33-50.

共引文献19

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部