期刊文献+

基于编码特征学习的3D点云语义分割网络 被引量:2

3D Point Cloud Semantic Segmentation Network Based on Coding Feature Learning
下载PDF
导出
摘要 目前点云语义分割已广泛应用到自动驾驶、虚拟现实等多个领域,但现阶段点云分割算法无法提取较完整的空间结构信息,难以解释每个点编码信息的问题.针对此缺陷,文中提出基于编码特征学习的3D点云语义分割网络.首先,在引入角度信息和增强特征的基础上构造局部特征编码器(Local Feature Encoder,LFE),学习较完整的局部空间结构,缓解相似物体错分割问题.然后,设计混合池化聚合模块(Mixed Pooling Polymerization,MPP),聚合粗犷特征和精细特征,同时保证点云的排序不变性.最后,采用多尺度特征融合,充分利用编码层不同尺度特征,实现准确的语义分割.在两个大型基准数据集S3DIS和SemanticKITTI上的实验表明文中网络的优越性. Now point cloud semantic segmentation is widely applied in various fields such as autonomous driving and virtual reality.However,the current point cloud semantic segmentation algorithms cannot extract relatively complete spatial structure information,and the information for each point is difficult to explain.To address this deficiency,a 3D point cloud semantic segmentation network based on coding feature learning is proposed.Firstly,the local feature encoder is designed based on the introduction of angle information and the enhanced features to learn more complete local spatial structures and alleviate the problem of misclassification of similar objects.Secondly,mixed pooling polymerization module is designed to aggregate rough features and fine features while ensuring the sorting invariance of point cloud.Finally,the multi-scale feature fusion is adopted to fully utilize the different scale features in the encoding layer and achieve accurate semantic segmentation.The experiment on two large benchmark datasets,S3DIS and SemanticKITTI,demonstrates the superiority of the proposed network.
作者 佟国峰 刘永旭 彭浩 邵瑜渊 TONG Guofeng;LIU Yongxu;PENG Hao;SHAO Yuyuan(College of Information Science and Engineering,Northeastern University,Shenyang 110819)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2023年第4期313-326,共14页 Pattern Recognition and Artificial Intelligence
基金 国家重点研发计划项目(No.2019YFB1309905,2020YFB1712802)资助。
关键词 点云语义分割 局部特征编码器 混合池化 多尺度融合 Point Cloud Semantic Segmentation Local Feature Encoder Mixed Pooling Multi-scale Fusion
  • 相关文献

参考文献1

二级参考文献9

  • 1罗浩,陆哲明.一种抗噪快速边缘检测算法[J].测试技术学报,2004,18(z1):49-52. 被引量:2
  • 2Keogh E, Folias T. The UCR Time Series Data Mining Archive[EB/OL]. [2002-07-31]. http://www.cs.ucr.edu/~eamonn/TSDMA/index. html
  • 3Prat K B, Fink E. Search for Patterns in Compressed Time Series. International Journal of Image and Graphics, 2002, 2(1):89-106
  • 4Keogh E J, Chakrabarti K, Pazzani M J, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Journal of Knowledge and Information Systems, 2001, 3(3):263-286
  • 5Yi B K, Faloustsos C. Fast Time Sequence Indexing for Arbitrary Lp Norms// Proc of the 26th International Conference on Very Large Data Bases. Cairo, Egypt, 2000:385-394
  • 6Xiao Hui, Feng Xiaofei, Hu Yunfu. A New Segmented Time Warping Distance for Data Mining in Time Series Database//Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅱ: 1277-1281
  • 7Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases// Proc of the 9th IEEE International Conference on Tools with Artificial Intelligence. Newport Beach, USA, 1997:578-584
  • 8Box G E P, Jenkins G M, Reinsel G C. Time Series Analysis: Forecasting and Control. 3rd Edition. Cambridge, UK: Cambridge University Press, 2005
  • 9李俊奎,王元珍,刘城成,等.时间序列表示进展及比较研究:时间序列挖掘建模环境[EB/OL].[2006-10-20].http://www.paper.edu.cn/downloadpaper.php?serial_number=20610260&type=1)

共引文献8

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部