摘要
针对医用多导睡眠监测仪不便于家用普及的问题,设计了一种基于单一脑电信号的呼吸暂停事件检测算法,利用巴特沃斯滤波器对脑电信号进行频带分解,采用基于模糊熵的方法在子带信号中提取特征参数,对比呼吸暂停和正常呼吸期间对应脑电模糊熵的变化,建立机器学习分类模型对呼吸暂停事件和正常呼吸事件进行分类,并采用来自2个独立数据库的55名被试的睡眠脑电数据对该方法的有效性进行验证。结果表明:该方法在公共数据和临床数据中分别取得了93.25%和94.50%的准确率,证明了脑电模糊熵可有效地表征呼吸暂停期间的脑电特性,为便携式呼吸暂停检测设备的实现提供了理论基础及技术支持。
In view of that the medical polysomnography is not convenient for home use,an apnea event detection algorithm based on single electroencephalogram signals was designed.The signals were decomposed by the Butterworth filter,and then the characteristic parameters were extracted from the sub-band signals using the fuzzy entropy-based method.After that,the changes of electroencephalogram fuzzy entropy during apnea and normal breathing were compared,and then a machine learning classification model was established to distinguish apnea from normal respiratory events.The total of 55 subjects′sleep electroencephalogram data from two independent databases were used to verify the validity of this method.The results showed that the method achieved 93.25%and 94.50%accuracy in public data and clinical data,respectively.This study demonstrated that fuzzy entropy can effectively characterize electroencephalogram properties during apnea.In addition,the research also provided theoretical basis and technical support for the realization of portable apnea detection equipment.
作者
王瑶
杨天顺
王金海
韦然
赵晓赟
WANG Yao;YANG Tian-shun;WANG Jin-hai;WEI Ran;ZHAO Xiao-yun(School of Life Sciences,Tiangong University,Tianjin 300387,China;School of Precision Instruments and Optoelec-tronics Engineering,Tianjin University,Tianjin 300072,China;School of Electronics and Information Engineering,Tiangong University,Tianjin 300387,China;Department of Respiratory and Critical Care Medicine&Sleep Center,Tianjin Chest Hospital,Tianjin 300222,China)
出处
《天津工业大学学报》
CAS
北大核心
2023年第2期49-54,共6页
Journal of Tiangong University
基金
国家重点研发计划资助项目(2019YFC0119400)
国家自然科学基金资助项目(6170134)
天津市自然科学基金资助项目(19JCQNJC13100)
天津市津南区科技计划资助项目(20200116)
天津市卫生健康科技资助项目(KJ20015)。
关键词
呼吸暂停
脑电信号
模糊熵
机器学习
自动检测
apnea
EEG signal
fuzzy entropy
machine learning
automatic detection