摘要
针对现有间隔织物立体织机不能织造大间距间隔织物的弊端,提出了一种在二维无梭织机上织造大间距间隔织物的技术,设计了一种由送入机构、拖拉机构和拖纱杆组成的增大间隔织物间距的拖纱机构。对影响拖纱过程稳定性及织物间距精度的关键部件拖纱杆在2种运动阶段下的受力情况进行有限元分析,基于响应面法以拖纱杆在拖纱运动阶段的最大变形为优化目标,对拖纱杆的结构参数进行优化设计。结果表明:加装拖纱机构后,织机可以织造间距取值范围为110~322 mm的间隔织物;相较于原方案,优化方案中拖纱杆在送入阶段的最大变形减少了0.7%,在拖纱运动阶段的最大变形减少了18.92%。
Aiming at the disadvantage that the existing three-dimensional looms for spacer fabrics cannot weave large-space spacer fabrics,a technique for weaving fabrics with large space on a two-dimensional loom is proposed,and a dragging mechanism composed of a feeding mechanism,a tractor mechanism and a dragging rod is designed to increase the space of spacer fabrics.The force situation of key component drag rod which affects the stability of the yarn dragging process and the accuracy of fabric space under two different stages of movement is analyzed by finite element method.Based on the response surface method,the maximum deformation of the dragging rod in the dragging stage is taken as the optimization objective,and the structural parameters of the dragging rod are optimized.The results show that after installing the dragging mechanism,the loom can weave the spacer fabrics with a space range of 110-322 mm;compared with the original scheme,the maximum deformation of dragging rod in the optimized scheme at the feeding stage is reduced by 0.7%,and the maximum deformation of dragging rod at the dragging stage is reduced by 18.92%.
作者
杨建成
杨超群
岳三旺
刘家辰
YANG Jian-cheng;YANG Chao-qun;YUE San-wang;LIU Jia-chen(School of Mechanical Engineering,Tiangong University,Tianjin 300387,China;Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology,Tiangong University,Tianjin 300387,China;Tianjin Mechanical Foundation and Textile Equipment Design Virtual Simulation Experimental Teaching Center,Tiangong University,Tianjin 300387,China)
出处
《天津工业大学学报》
CAS
北大核心
2023年第2期74-80,共7页
Journal of Tiangong University
基金
国家重点研发计划资助项目(2018YFB1308801)
国家科技支撑计划重点资助项目(2011BAF08B02)。
关键词
大间距间隔织物
织造技术
拖纱机构
优化设计
响应面法
spacer fabric with large space
weaving technology
dragging mechanism
optimal design
response surface methodology(RSM)