期刊文献+

多特征感知情感分析模型 被引量:2

Multi-Feature Perception Sentiment Analysis Model
下载PDF
导出
摘要 情感分析旨在对带有情感色彩的主观性文本进行分析和总结,针对现有的情感分析研究存在语料特征提取不足等问题,提出了一种基于BERT的多特征感知情感分析模型。首先,将情感文本输入BERT进行语料编码,然后使用多个卷积核提取编码文本片段的局部特征设计了局部特征层,再对编码文本进行降采样操作构造全局特征层,通过融合局部特征层与全局特征层得到多特征感知网络,从而增强情感语料间的信息关联。实验表明,所设计的多特征感知情感分析模型是有效的。 Sentiment analysis aims to analyze and summarize subjective texts with emotional colors.Aiming at the problems of insufficient corpus feature extraction in existing sentiment analysis research,a BERT-based multifeature perception sentiment analysis model is proposed.First,the emotional text was input into BERT for corpus encoding,and then multiple convolution operations were used to extract the local features of the short text to design a local feature layer,and then the encoded text was down-sampled to construct a global feature layer.By fusing the local feature layer and the global feature,the multi-feature perception network was obtained,thereby enhancing the information association between emotional corpus.Experiments show that the multi-feature perceptual sentiment analysis model designed in this paper is effective.
作者 袁勋 刘蓉 刘明 YUAN Xun;LIU Rong;LIU Ming(College of Physical Science and Technology,Central China Normal University,Wuhan Hubei 430079,China;School of Computer,Central China Normal University,Hubei Wuhan Hubei 430079,China)
出处 《计算机仿真》 北大核心 2023年第4期509-513,共5页 Computer Simulation
基金 国家社会科学基金项目(19BTQ005)。
关键词 自然语言处理 情感分析 多特征感知 特征融合 Natural language processing Sentiment analysis Multi-feature perception Feature fusion
  • 相关文献

参考文献3

二级参考文献79

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990.
  • 2Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57.
  • 3Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 4Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235.
  • 5Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006.
  • 6Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004.
  • 7Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38.
  • 8Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006.
  • 9Roweis S. EM algorithms for PCA and SPCA//Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 1998, 10.
  • 10Hofmann T. Probabilistic latent semantic analysis//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999:289- 296.

共引文献311

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部