期刊文献+

量子关联成像及其雷达应用研究

Quantum correlation imaging and its application for LiDAR
下载PDF
导出
摘要 介绍了量子关联成像的物理原理,阐述了量子关联成像灵敏度高、抗干扰能力强、信息获取效率高、能够实现单像素探测成像和无透镜成像的技术特点;探讨了量子关联成像雷达的运动物体成像问题和大气影响应对问题,指出可通过提高采样频率、升级跟踪手段、优化成像策略等方式提升量子关联成像雷达的应用性能;展望了量子关联成像雷达在侦察、预警等领域的发展方向,提出未来通过发展极弱光条件下的成像技术、优化设计照明方式、建立多基站协同体系、发展人工智能算法和多维信息智能融合算法等方式,进一步提升量子关联成像雷达的发现概率、跟踪精度、判别准确度、有效作用距离。 In this paper,basic physics of quantum correlation imaging is introduced,with discussion on its properties of high sensitivity,robustness,efficiency of information acquisition,as well as the capability of singlepixel and lensless imaging.Towards its applications in Lidar,issues related to imaging of moving objects and influences from the atmosphere are discussed.By improving the sampling rate,enhancing the means of tracking and optimizing the strategy of imaging reconstruction,the application performance of quantum correlation imaging can be upgraded.The development direction of quantum correlation imaging lidar in fields such as scouting and early warning are prospected.Further improvements of the discovery probability,tracking accuracy,discrimination accuracy and effective working distance in the future by studying imaging technology under extremely low photon flux,optimizing design of illumination patterns,establishing cooperation among multiple systems,and developing algorithms including artificial intelligence and information fusion are expected.
作者 孙帅 何林贵 陈鹏 鲍可 刘伟涛 SUN Shuai;HE Lingui;CHEN Peng;BAO Ke;LIU Weitao(Institute for Quantum Science and Technology,College of Science,National University of Defense Technolog,Changsha 410073,China;Interdisciplinary Center of Quantum Information,National University of Defense Technology,Changsha 410073,China;Hunan Key Laboratory of Mechanism and technology of Quantum Information,Changsha 410073,China)
出处 《计测技术》 2023年第3期75-90,共16页 Metrology & Measurement Technology
基金 国家自然科学基金(62275270,62105365)。
关键词 成像系统 量子关联成像 量子光学 光学雷达 imaging system quantum correlation imaging quantum optics LiDAR
  • 相关文献

参考文献7

二级参考文献45

  • 1李自杰,赵清,龚文林.Performance comparison of ghost imaging versus conventional imaging in photon shot noise cases[J].Chinese Optics Letters,2020,18(7):40-44. 被引量:2
  • 2P. H. S. Ribeiro, S. Pddua, J. C. M. da Silva et al.Controlling the degree of visibility of Youngrs fringes with photon coincidence measurements [J]. Phys. Rev. A, 1994, 49 (5) 4176-4179.
  • 3D. Strekalov, A. Sergienko, D. Klyshko et al. Observation of two-photon "ghost" interference and diffraction[J]. Phys. Rev. Lett. , 1995, 74(18): 3600-3603.
  • 4R. S. Bennink, S. J. Bentley, R. W. Boyd. " Two-photon" coincidence imaging with a classical source[J]. Phys. Rev. Lett. , 2002, 89(11): 113601.
  • 5J. Cheng, S. Ham Incoherent coincidence imaging and its applicability in X-ray diffraetion[J]. Phys. Rev. Lett., 2004, 92(9) . 093903.
  • 6A. Gatti, E. Brambilla, M. Bache et al. Ghost imaging with thermal light: comparing entanglement and classical correlation [J]. Phys. Rev. Lett. , 2004, 93(9): 093602.
  • 7J. Xiong, D. Z. Cao, F. Huang et al. Experimental observation of classical subwavelength interference with a pseudothermal light source. Phys. Rev. Lett. , 2005, 94(17) : 173601.
  • 8D. Zhang, Y. H. Zhai, L. A. Wuetal. Correlated two-photon imaging with true thermal light[J]. Opt. Lett. , 2005, 30(18): 2354-2356.
  • 9A. Valencia, G. Scarcelli, M. D. Angelo et al. Two-photon imaging with thermal light[J]. Phys. Rev. Lett., 2005, 94(6): 0636O1.
  • 10D. Z. Cao, J. Xiong, K. Wang. Geometrical optics in correlated imaging svstems[JT. Phys. Rev. A, 2005, 71(1). 013801.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部