摘要
当前城市违法占地和违法建筑监测大多基于遥感影像开展,无法有效发现建筑物加建、加盖等情况,利用影像密集匹配点云提取建筑物三维变化是“两违”精准监测的有效途径。本文以贵港市“两违”监测工作为例,以无人机影像密集匹配点云为基础数据,通过构建深度神经网络模型自动提取建筑物点云,并检测不同时相建筑物点云的变化,经叠加审批、规划等自然资源管理数据,快速提取出疑似“两违”图斑并开展监测。
At present,the monitoring of illegal land and illegal construction is mostly based on remote sensing images,it can not effectively detect the situation of building addition and construction,and so on.The use of image densely matching point clouds for extracting 3D changes of buildings is an effective way to accurately monitor“two violations”.In Guigang city“two violations”monitoring as an example,using UAV image matching point clouds as the basic data,through the depth of neural network model to extract buildings point clouds,and to detect the change of the different temporal point clouds,after superimposing the management data of natural resources,such as approval and planning,extract the suspected“two violations”spots and monitoring.
作者
全昌文
李正洪
庞百宁
熊毅飞
QUAN Changwen;LI Zhenghong;PANG Baining;XIONG Yifei(Guangxi Institute of Natural Resources Survey and Monitoring,Nanning 530219,China;Technology Innovation Center for Natural Resources Monitoring and Evaluation of Beibu Gulf Economic Zone,Ministry of Natural Resources,Nanning 530219,China)
出处
《测绘通报》
CSCD
北大核心
2023年第4期111-114,134,共5页
Bulletin of Surveying and Mapping
基金
广西重点研发计划(AB22080077)
广西科技基地和人才专项(AD20238044)
广西空间信息与测绘重点实验室基金(191851011)
广西壮族自治区自然资源调查监测院“揭榜挂帅”项目(JBGS2022008)。
关键词
密集匹配点云
两违
无人机
监测
densely matched point clouds
two violations
UAV
monitoring