期刊文献+

基于核主成分分析算法的海底管道内腐蚀风险预测 被引量:1

Internal Corrosion Risk Prediction of Submarine Pipeline Based on Kernel Principal Component Analysis
下载PDF
导出
摘要 采用核主成分分析(KPCA)算法,分别对高斯核支持向量机(SVM-rbf)、多项式核支持向量机(SVM-poly)、线性核支持向量机(SVM-linear)、人工神经网络(ANN)和随机森林(RFR)等算法进行优化,以网格搜索法进行参数寻优,对20条海底管道的最大腐蚀速率进行预测,以均方根误差(RMSE)、平均绝对误差(MAE)和平方相关系数(R^(2))作为评价指标对优化前后模型的预测效果进行评价。结果表明:优化后各模型的R^(2)值显著提高,最高达0.9877;KPCA能够降低特征维度,减少噪声干扰,提升模型预测性能;优化后的支持向量机算法对海底管道腐蚀速率预测的准确性较高,能够为海底油气田管道腐蚀的预警与防护提供参考。 The kernel principal component analysis(KPCA)was used to optimize the algorithms such as gaussian kernel support vector machine(SVM-rbf),poly kernel support vector machine(SVM-poly),linear kernel support vector machine(SVM-linear),artificial neural network(ANN)and random forest(RFR).The maximum corrosion rate of 20 submarine pipelines was predicted by grid search method.The root mean square error(RMSE),mean absolute error(MAE)and squared correlation coefficient(R^(2))were used as evaluation indexes to evaluate the prediction effect of the model before and after optimization.The results showed that the R^(2) value of each model was significantly increased after optimization,and the maximum value was 0.9877.KPCA could reduce both the feature dimension and the noise interference and improve the prediction performance of the model.The optimized support vector machine algorithm had high accuracy in predicting the corrosion rate of submarine pipelines,which could provide a reference for early warning and protection of submarine oil and gas pipeline corrosion.
作者 贾海韵 胡丽华 李夏侨 曲志豪 王竹 常炜 张雷 JIA Haiyun;HU Lihua;LI Xiaqiao;QU Zhihao;WANG Zhu;CHANG Wei;ZHANG Lei(University of Science and Technology Beijing,Beijing 100083,China;CNOOC Research Institute Co.,Ltd..Beijing 100028,China)
出处 《腐蚀与防护》 CAS CSCD 北大核心 2023年第3期82-87,共6页 Corrosion & Protection
基金 国家重点研发计划(2020YFB0704501)。
关键词 核主成分分析 支持向量机 随机森林 人工神经网络 H_(2)S/CO_(2)腐蚀 kernel principal component analysis support vector machine random forest artificial neural network H_(2)S/CO_(2) corrosion
  • 相关文献

参考文献9

二级参考文献75

共引文献62

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部