期刊文献+

Effects of rumen microorganisms on the decomposition of recycled straw residue

原文传递
导出
摘要 Recently,returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution.Meanwhile,the slow decomposition of straw may harm the growth of the next crop.This study aimed to determine the effects of rumen microorganisms(RMs)on straw decomposition,bacterial microbial community structure,soil properties,and soil enzyme activity.The results showed that RMs significantly enhanced the degradation rate of straw in the soil,reaching 39.52%,which was 41.37%higher than that of the control on the 30th day after straw return.After 30 d,straw degradation showed a significant slower trend in both the control and the experimental groups.According to the soil physicochemical parameters,the application of rumen fluid expedited soil matter transformation and nutrient buildup,and increased the urease,sucrase,and cellulase activity by 10%‒20%.The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid.The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability,which was the main reason for the accelerated straw decomposition.Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw,proposing a viable solution to the problem of sluggish straw decomposition.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2023年第4期336-344,共9页 浙江大学学报(英文版)B辑(生物医学与生物技术)
基金 National Natural Science Foundation of China(Nos.52160002,21707057,and 31860595) Natural Science Foundation of Jiangxi Province(No.20192BAB213018).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部