摘要
为使数据真正成为我们所需要的有用资源,在应用中需要对数据进行合理的分析与整理。过滤无用的数据,以满足需求并提高数据的利用效率,这样才不会使得大量的数据由于技术的限制而无法被有效利用。因此,数据挖掘技术应运而生。经过长时间的研究,数据挖掘算法有了很大发展,已经可以应用在多个方面。文章主要以交通态势数据为研究对象,讨论如今在交通数据被大量记录的情况下,各个数据挖掘方法在对交通数据进行分析挖掘时会出现怎样的不同,并分析比对这几种算法的适用情况和优劣势所在。
In order to make the data really become a useful resource,we need to analyze and organize the data reasonably,filter the useless data to meet the needs and improve the efficiency of data utilization.Only in this way can we not make a large number of data can not be effectively utilized due to technical constraints.Therefore,data mining technology emerges at the historic moment.Nowadays,after many years,data mining algorithm has been greatly developed,and it can be applied in many aspects.This article mainly focuses on trafic situation data,discusses how different data mining methods will appear when analyzing and mining traffic data when traffic data is recorded in large quantities,and analyzes and compares the applicability,advantages,and disadvantages of these algorithms.
作者
范泽冰
FANZebing(Kharkov National University,Kharkov 61000,Ukraine)