摘要
目的观察以边界增强多模态乳腺声像图像素级特征融合方法评估良、恶性乳腺肿瘤性质的价值。方法基于乳腺肿瘤B型声像图提取边界增强图像,于超声弹性复合声像图中提取纯弹性信息图像。对多模态乳腺肿瘤声像图进行像素级特征融合,形成边界特征增强的融合图像,再以卷积神经网络(CNN)进行分类;评估融合方法分类良、恶性乳腺肿瘤的性能,并与单模态方法、特征级融合方法、无边界增强像素级图像融合方法及其他CNN模型进行对比。结果边界增强像素级特征融合方法有助于CNN提取乳腺肿瘤特征,分类良、恶性乳腺性能最佳,其分类准确率为85.71%,特异度为85.49%,敏感度为86.16%,模型稳定。结论边界特征增强像素级多模态声像图融合方法可用于判断良、恶性乳腺肿瘤。
Objective To observe the value of boundary enhancement pixel-level feature fusion of multi-modal breast ultrasound images for evaluating benign and malignant breast tumors.Methods Boundary-enhanced images were extracted from B-mode ultrasonograms of breast tumors,and pure-elastic information images were extracted from elastic composite ultrasonograms.Then multi-modal breast tumor ultrasonograms were fused with pixel-level features to form fused images with boundary feature enhancement,which were then classified using convolutional neural network(CNN).The performance of fusion method in classifying breast tumors was analyzed and compared with that of single-modal method,feature-level fusion method,pixel-level image fusion method without boundary enhancement,also with other CNN models.Results Boundary-enhanced pixel-level feature fusion was helpful for extracting features of breast tumors with the best classification performance using CNN,with classification accuracy of 85.71%,specificity of 85.49%,sensitivity of 86.16%,and the model was stable.Conclusion Pixel-level multi-modal ultrasound image fusion with boundary feature enhancement could be used to judge benign and malignant breast tumors.
作者
李晋
李玉冰
苏畅
何萍
崔立刚
林伟军
LI Jin;LI Yubing;SU Chang;HE Ping;CUI Ligang;LIN Weijun(Ultrasonic Laboratory,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Department of Ultrasound Diagnosis,Peking University Third Hospital,Beijing 100191,China)
出处
《中国医学影像技术》
CSCD
北大核心
2023年第5期741-745,共5页
Chinese Journal of Medical Imaging Technology
基金
中国科学院青年创新促进会项目(2019024)。
关键词
乳腺肿瘤
超声检查
弹性成像技术
神经网络
计算机
breast neoplasms
ultrasonography
elasticity imaging techniques
neural networks,computer