期刊文献+

基于谱图分解的宽带通信信号智能检测算法 被引量:1

Intelligent detection algorithm of broadband communication signal based on spectral decomposition
下载PDF
导出
摘要 对于宽带通信信号检测问题,针对目前基于深度学习的信号检测算法不适应于处理大带宽和大时宽的宽带信号以及对信号时频参数估计存在的固有偏差问题,提出基于谱图分解的宽带通信信号智能检测算法,完成对大带宽接收信号中窄带信号的高效准确检测。首先将由宽带信号转化而来的灰度时频谱图通过谱图分解得到适合于目标检测网络输入大小的子谱图,然后使用改进的无锚框YOLOx目标检测算法对子谱图中的窄带信号进行检测,最后将子谱图的信号检测结果融合得到窄带信号的时频参数等检测结果。经过实验测试得出,该算法能够适应复杂的噪声环境,与其他深度学习算法和传统算法相比,具有较高的信号检测概率,较低的虚警概率,较小的信号参数估计平均误差,其检测精度更高,鲁棒性、实用性、通用性更强。 For broadband communication signal detection problem,as the current signal detection algorithm based on deep learning is not suitable for dealing with large bandwidth and large wide broadband signals,and there is the inherent deviation in signal frequency parameter estimation,we put forward intelligent broadband communication signal detection algorithm based on spectrum decomposition,thus to complete highly accurate detection of narrowband signal in large bandwidth receiving signal.First,the broadband signal is transformed into a grayscale timefrequency spectrum which is subsequently decomposed into a sub-spectrum suitable for the input size of the target detection network.Then,the anchor-free YOLOx target detection algorithm is used to detect the narrowband signal targets in the sub-spectrum.Finally,the signal detection results of the sub-spectrum are fused to obtain the detection results of the time-frequency parameters of the narrow-band signal.Experimental results show that the proposed algorithm can adapt to the complex noise environment.Compared with other deep learning algorithms and traditional energy detection algorithms,the proposed algorithm has higher signal detection accuracy,lower false alarm probability,smaller average error of signal parameter estimation,and stronger robustness,practicability and versatility.
作者 易冬 马瑞鹏 胡涛 成凯鑫 吴迪 田志富 王艳云 Yi Dong;Ma Ruipeng;Hu Tao;Cheng Kaixin;Wu Di;Tian Zhifu;Wang Yanyun(School of Data and Target Engineering,University of Information Engineering,Zhengzhou 450001 China;School of Cyberspace Security,Zhengzhou University,Zhengzhou 450002 China)
出处 《强激光与粒子束》 CAS CSCD 北大核心 2023年第6期150-158,共9页 High Power Laser and Particle Beams
关键词 谱图分解 宽带多信号检测 YOLOx 时频谱图 短时傅里叶变换 spectral decomposition wide-band signal detection YOLOx time-frequency diagram short time Fourier transform
  • 相关文献

参考文献3

二级参考文献47

  • 1MitolaJ, Maguire G. Cognitive radio: making software radios more personal[J]. IEEE Personal Communica?tions, 1999,6(4) :13-18.
  • 2Urkowitz H. Energy detection of unknown deterministic sig?nals[J]. Proceedings of IEEE, 1967, 55 ( 4 ) : 523-531.
  • 3Yucek T, Arslan H. A survey of spectrum sensing algo?rithms for cognitive radio applications[J]. IEEE Com?munications Surveys & Tutorials, 2009 , 11 ( 1 ) : 116-130.
  • 4Ariananda D D, Lakshmanan M K, Nikookar H. A study on the application of wavelet packet transforms to cogni?tive radio spectrum estimation[CJ I I The 4 th Int. Conf. on Cognitive Radio Oriented Wireless Networks and Com?munications, Hannover, Germany, 2009: 1- 6.
  • 5Youn Y, Ieon H,Jung H, Lee H. Discrete wavelet packet transform based energy detector for cognitive radios[CJ II IEEE Vehicular Technology Conference, Dublin, Ireland, 2007: 2641-2645.
  • 6Kim S, Yoon Y,Jeon H. Selective discrete wavelet pack?et transform-based energy detector for cognitive radios[J]. IEEE Military Communications Conference, Dae?jeon, Korea, 2008: 1- 6.
  • 7Chandran A, Anantha K R, Kumar A. Discrete wavelet transform based spectrum sensing in futuristic cognitive radios[CJ liThe Int. Conf. on Devices and Communica?tions (ICDeCom), Mesra, India, 2011 :1-4.
  • 8Chen X, Zhao L, LiJ. A modified spectrum sensing method for wideband cognitive radio based on compressive sensing[C] liThe Fourth Int. Conf. on Communications and Networking in China, Xi' an, China, 2009: 1-5.
  • 9Venkat R, Homayoun N. Performance evaluation of a wavelet packet-based spectrum estimator for Cognitive Radio applications[C] II IEEE Symposium on Communi?cations and Vehicular Technology in the Benelux (SCVT), Ghent, Belgium, 2011: 1-6.
  • 10Chantaraskul S, Moessner K. Implementation of wavelet analysis for spectrum opportunity detection[CJ II IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo,Japan, 2009: 2310-2314.

共引文献21

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部