期刊文献+

LGB38MnV非调质钢热变形行为研究

Research on Hot Deformation Behavior of LGB38MnV Non-quenched and Tempered Steel
下载PDF
导出
摘要 通过热模拟压缩试验,研究LGB38MnV非调质钢在不同温度及应变速率下的热变形行为。利用Gleeble3500热力学模拟机进行单道次高温压缩,分别得到变形温度为850℃、900℃、950℃、1000℃,应变速率为0.01 s^(-1)、0.1 s^(-1)、1 s^(-1)、10 s^(-1)时的应力-应变曲线,建立双曲正弦形式Arrhenius的本构方程。研究表明,当变形速率为0.01 s^(-1),变形温度为850℃~1000℃时进行热压缩,LGB38MnV钢会发生动态再结晶,当变形温度等于1000℃,且变形速率0.01 s^(-1)~1 s^(-1)时,LGB38MnV钢也会发生动态再结晶。LGB38MnV钢热变形的流变应力随着变形温度的升高而减小。 High temperature compression test of LGB38MnV non-quenched and tempered steel was carried out at different temperatures and strain rates,and the hot deformation behavior was studied.The isothermal compression test was conducted on Gleeble 3500 at the temperature 850℃、900℃、950℃、1000℃and strain rate of 0.01 s^(-1)、0.1 s^(-1)、1 s^(-1)、10 s^(-1),and the flow stress curves were obtained.A constitutive model that was expressed by the hyperbolic laws in an Arrhenius-type equation was established.It was abtained that dynamic recrystallization took place when rolled at deformation temperatures of 850 to 1000℃and strain rates of 0.01 s^(-1),it also took place when rolled at deformation temperatures of 1000℃and strain rates which are not greater than 1 s^(-1).The flow stress decreased with the increasing of the deformational temperature,and increased with the increasing of the strain rate.
作者 刘升旭 Liu Shengxu(Guangxi Vocational&Technical College,Nanning,China)
出处 《科学技术创新》 2023年第13期45-48,共4页 Scientific and Technological Innovation
基金 2019年广西壮族自治区中青年能力提升项目,桂教科研[2019]1号2019KY1213。
关键词 LGB38MnV钢 本构方程 Gleeble3500 动态再结晶 LGB38MnV steel constitutive equation Gleeble3500 dynamic recrystallization
  • 相关文献

参考文献1

二级参考文献14

  • 1丁洁,张英建,陈蕴博.控锻控冷对非调质钢38MnVS5的组织影响[J].材料热处理学报,2006,27(5):35-38. 被引量:14
  • 2王安东,刘国权,杨才福,向嵩,韩庆礼.C和N含量对V-N-Ti微合金非调质钢组织的影响[J].材料热处理学报,2007,28(5):51-56. 被引量:7
  • 3Lin Y C,Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [ J]. Materials and Design,2011,32(4) :1733 -1759.
  • 4Sellars C M,Tegart W J M. On the mechanism of hot deformation [ J ]. Acta M etallurgica, 1966,14 (9) :1136 - 1138.
  • 5Pu Z J, Wu K H, Shi J,et al. Development of constitutive relationships for the hot deformation of boron microalloying TiA1-Cr-V alloys [ J ]. Materials Science and Engineering A, 1995,192 - 193:780 - 787.
  • 6Samantaray D,Mandal S, Bhaduri A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-I Mo (P91) steel[ J l. Materials and Design,2010,31 (2) :981 -984.
  • 7Ji G,Li F, Li Q, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet 100 steel[ J]. Materials Science and Engineering A ,2011,528 (13 -14 ) :4774 -4782.
  • 8Lin Y C,Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[ J 1. Computational Materials Science, 2008,42 (3) :470 - 477.
  • 9Mandal S,Rakesh V,Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [ J ]. Materials Science and Engineering A ,2009,500 ( 1 - 2) : 114 - 121.
  • 10Xiao Y H, Guo C, Guo X Y. Constitutive modeling of hot deformation behavior of H62 brass [ J ]. Materials Science and Engineering A, 2011,528 (21) :6510 -6518.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部